Advanced search
Start date
Betweenand

Understanding the response of photosynthetic metabolism in tropical forests to seasonal climate variations

Grant number: 13/50533-5
Support type:Regular Research Grants
Duration: January 01, 2014 - December 31, 2016
Field of knowledge:Physical Sciences and Mathematics - Geosciences
Cooperation agreement: GOAmazon Collaborative Research
Principal Investigator:Luiz Eduardo Oliveira e Cruz de Aragão
Grantee:Luiz Eduardo Oliveira e Cruz de Aragão
Principal investigator abroad: Dennis Gene Dye
Institution abroad: U.S. Geological Survey, Denver (USGS), United States
Home Institution: Instituto Nacional de Pesquisas Espaciais (INPE). Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brasil). São José dos Campos , SP, Brazil

Abstract

We propose a study focused on the basic question: What controls the response of photosynthesis in Amazonian forests to seasonal variations in climate? This question, despite its apparent simplicity, remains difficult for modem earth system models to answer, and is also the subject of continuing controversy in the remote-sensing literature. For example, in the modeling arena, four cutting-edge earth system models (ESM's) show significant divergence in their seasonal pattems of photosynthesis from observed whole-system photosynthetic fluxes at two sites in the central Amazon. The overall objective of the project is to guide improvements in earth system models of tropical forest photosynthesis by collecting and integrating a suite of observations to 1) test several hypotheses (three core, conceptual hypotheses for explaining observed photosynthetic seasonality and a methodological hypotheses for scaling from leaves to canopy with hyperspectral cameras), and 2) perform a synthesis activity that applies our empirical work to earth system models of terrestrial carbon cycling. The project will provide an extensive suite of new and unique datasets that enable us to fill, through advanced modeling techniques and analysis, critical knowledge gaps in current understanding of what controls the response of canopy photosynthesis and related functions in Amazonian forests to seasonal variation in climate. Three major types of datasets and data products will be delivered: (1) in situ leaf and tree-scale measurements from intensive ecophysiological and ecohydological field campaigns, (2) time-series observations of leaf-to-crown scale forest reflectance properties and atmospheric radiation from two innovative, ground-based imaging sensors (respectively, the Hyperspectral Vegetation Imaging System and the High Dynamic Range AII-Sky Imaging System), and (3) results from state-of-the-art models of 3-dimensional canopy processes for radiative transfer and photosynthesis that integrate and link our observations to tropical forest processes. These data products and the improved knowledge we achieve with them will contribute to testing and improving the treatment of tropical forest processes in ESMs. They will contribute data to and leverage related data from ofthe GOAmazon campaign, and make significant contributions to support the overall goals of GOAmazon. This work will also help establish a foundation for the Next Generation Ecosystem Experiments (NGEE) in the Tropics. (AU)

Articles published in Agência FAPESP Newsletter about the research grant
Study investigates Atlantic Rainforest regeneration in the state of São Paulo 
Articles published in other media outlets (21 total):
More itemsLess items
Inteligencia artificial para regenerar uno de los ecosistemas más importantes del planeta 
Inteligência artificial ajuda a monitorar regeneração de áreas desmatadas da Mata Atlântica - CicloVivo 
Inteligência artificial ajuda a monitorar regeneração de áreas desmatadas da Mata Atlântica 
Inteligência artificial ajuda a monitorar regeneração de áreas desmatadas da Mata Atlântica 
Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 
Fapesp: Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 
Fapesp: Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 
Fapesp: Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 
Fapesp: Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 
Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 
Estudo da regeneração da Mata Atlântica em São Paulo 
Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 
Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 
Study investigates Atlantic Rainforest regeneration in the state of São Paulo 
Study investigates Atlantic Rainforest regeneration in the state of São Paulo 
Study investigates Atlantic Rainforest regeneration in the state of São Paulo 
Study investigates Atlantic Rainforest regeneration in the state of São Paulo 
Study investigates Atlantic Rainforest regeneration in the state of São Paulo 
Study investigates Atlantic Rainforest regeneration in the state of São Paulo 
Study investigates Atlantic Rainforest regeneration in the state of São Paulo 
Inteligência artificial ajuda a monitorar regeneração da Mata Atlântica 

Scientific publications (10)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
WAGNER, FABIEN H.; SANCHEZ, ALBER; AIDAR, MARCOS P. M.; ROCHELLE, ANDRE L. C.; TARABALKA, YULIYA; FONSECA, MARISA G.; PHILLIPS, OLIVER L.; GLOOR, EMANUEL; ARAGAO, LUIZ E. O. C. Mapping Atlantic rainforest degradation and regeneration history with indicator species using convolutional network. PLoS One, v. 15, n. 2 FEB 28 2020. Web of Science Citations: 0.
BARROS, FERNANDA DE V.; BITTENCOURT, PAULO R. L.; BRUM, MAURO; RESTREPO-COUPE, NATALIA; PEREIRA, LUCIANO; TEODORO, GRAZIELLE S.; SALESKA, SCOTT R.; BORMA, LAURA S.; CHRISTOFFERSEN, BRADLEY O.; PENHA, DELIANE; ALVES, LUCIANA F.; LIMA, ADRIANO J. N.; CARNEIRO, VILANY M. C.; GENTINE, PIERRE; LEE, JUNG-EUN; ARAGAO, LUIZ E. O. C.; IVANOV, VALERIY; LEAL, LEILA S. M.; ARAUJO, ALESSANDRO C.; OLIVEIRA, RAFAEL S. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. NEW PHYTOLOGIST, v. 223, n. 3, p. 1253-1266, AUG 2019. Web of Science Citations: 0.
SMITH, MARIELLE N.; STARK, SCOTT C.; TAYLOR, TYEEN C.; FERREIRA, MAURICIO L.; DE OLIVEIRA, ERONALDO; RESTREPO-COUPE, NATALIA; CHEN, SHULI; WOODCOCK, TARA; DOS SANTOS, DARLISSON BENTES; ALVES, LUCIANA F.; FIGUEIRA, MICHELA; DE CAMARGO, PLINIO B.; DE OLIVEIRA, RAIMUNDO C.; ARAGAO, LUIZ E. O. C.; FALK, DONALD A.; MCMAHON, SEAN M.; HUXMAN, TRAVIS E.; SALESKA, SCOTT R. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. NEW PHYTOLOGIST, v. 222, n. 3, p. 1284-1297, MAY 2019. Web of Science Citations: 7.
BRUM, MAURO; VADEBONCOEUR, MATTHEW A.; IVANOV, VALERIY; ASBJORNSEN, HEIDI; SALESKA, SCOTT; ALVES, LUCIANA F.; PENHA, DELIANE; DIAS, JADSON D.; ARAGAO, LUIZ E. O. C.; BARROS, FERNANDA; BITTENCOURT, PAULO; PEREIRA, LUCIANO; OLIVEIRA, RAFAEL S. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. JOURNAL OF ECOLOGY, v. 107, n. 1, p. 318-333, JAN 2019. Web of Science Citations: 13.
WAGNER, FABIEN HUBERT; FERREIRA, MATHEUS PINHEIRO; SANCHEZ, ALBER; HIRYE, MAYUMI C. M.; ZORTEA, MACIEL; GLOOR, EMANUEL; PHILLIPS, OLIVER L.; DE SOUZA FILHO, CARLOS ROBERTO; SHIMABUKURO, YOSIO EDEMIR; ARAGAO, LUIZ E. O. C. Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, v. 145, n. B, p. 362-377, NOV 2018. Web of Science Citations: 9.
BERTANI, GABRIEL; WAGNER, FABIEN H.; ANDERSON, LIANA O.; ARAGAO, LUIZ E. O. C. Chlorophyll Fluorescence Data Reveals Climate-Related Photosynthesis Seasonality in Amazonian Forests. REMOTE SENSING, v. 9, n. 12 DEC 2017. Web of Science Citations: 1.
DE MOURA, YHASMIN MENDES; GALVAO, LENIO SOARES; HILKER, THOMAS; WU, JIN; SALESKA, SCOTT; DO AMARAL, CIBELE HUMMEL; NELSON, BRUCE WALKER; LOPES, ALINE PONTES; WIEDEMAN, KENIA K.; PROHASKA, NEILL; DE OLIVEIRA, RAIMUNDO COSME; MACHADO, CAROLYNE BUENO; ARAGAO, LUIZ E. O. C. Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, v. 131, p. 52-64, SEP 2017. Web of Science Citations: 18.
STARK, SCOTT C.; BRESHEARS, DAVID D.; GARCIA, ELIZABETH S.; LAW, DARIN J.; MINOR, DAVID M.; SALESKA, SCOTT R.; SWANN, ABIGAIL L. S.; CAMILO VILLEGAS, JUAN; ARAGAO, LUIZ E. O. C.; BELLA, ELIZABETH M.; BORMA, LAURA S.; COBB, NEIL S.; LITVAK, MARCY E.; MAGNUSSON, WILLIAM E.; MORTON, JOHN M.; REDMOND, MIRANDA D. Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change. LANDSCAPE ECOLOGY, v. 31, n. 1, p. 181-194, JAN 2016. Web of Science Citations: 20.
DE MOURA, YHASMIN MENDES; HILKER, THOMAS; LYAPUSTIN, ALEXEI I.; GALVA, LENIO SOARES; DOS SANTOS, JOAO ROBERTO; ANDERSON, LIANA O.; RESENDE DE SOUSA, CELIO HELDER; ARAI, EGIDIO. Seasonality and drought effects of Amazonian forests observed from multi-angle satellite data. REMOTE SENSING OF ENVIRONMENT, v. 171, p. 278-290, DEC 15 2015. Web of Science Citations: 9.
MAEDA, EDUARDO EIJI; KIM, HYUNGJUN; ARAGAO, LUIZ E. O. C.; FAMIGLIETTI, JAMES S.; OKI, TAIKAN. Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophysical Research Letters, v. 42, n. 18, p. 7546-7553, SEP 28 2015. Web of Science Citations: 12.

Please report errors in scientific publications list by writing to: cdi@fapesp.br.