Abstract
Electrochemical oscillators are considered unique model-systems in mimicry emergent behavior ubiquitously found in nature. This complexity, expressed in terms of spontaneous formation of self-organized patterns far from thermodynamic equilibrium, can be manipulated accurately by techniques developed in synchronization engineering. In practice, the application of controlling methodologies and the rational design of these spatial structures have been supported by an exclusive adjustment of experimental parameters that affect the system as a whole, refraining from a detailed physical-chemical description. This project, therefore, aims to establish relations between the nonlinear dynamics with the molecular chemical kinetics involved in the self-organizing phenomenon and, consequently, to favor the selective obtaining of a desired pattern by previous knowledge of the reaction mechanism aspects. The base system that will be studied is related to the oxides distribution on the surface during the electrochemical dissolution and deposition of transition metals, their alloys and, semiconductors. The spatiotemporal resolution will be achieved by the extraction of surface images of the spatial metallic oxides distribution via ellipsometry measurements (ellipso-microscopy for surface imaging, EMSI). The images will be compared simultaneously with the overall current and potential changes. Mathematical modeling and numerical simulations based on a deterministic treatment will be carried out in parallel with the experiments, aiming to deepen the understanding of the connection between the reaction kinetics and the self-organized electrochemical dynamics. The approach of this project is interdisciplinary which favors partnerships already established in national and international scope. (AU)
| Articles published in Agência FAPESP Newsletter about the research grant: |
| More itemsLess items |
| TITULO |
| Articles published in other media outlets ( ): |
| More itemsLess items |
| VEICULO: TITULO (DATA) |
| VEICULO: TITULO (DATA) |
PROCESSO ELETROQUÍMICO DE OBTENÇÃO DE COMPOSTO BIS-TRIS-2CARBOXIETILFOSFODINA DE OURO (I), COMPOSTO BIS-TRIS-2-CARBOXIETILFOSFODINA DE OURO (I) ASSIM OBTIDO E SEU USO BR 10 2020 015176 2 - Universidade Estadual de Campinas Unicamp . Raphael Nagao De Sousa; Camilla Abbehausen; Adriana Coelho Queiroz; Jaqueline Fernandes Alvarenga; Igor Messias; Carolina Galuppo - January 2020, 01