Advanced search
Start date
Betweenand

Production of conductive filaments containing carbon nanomaterials and metal nanoparticles for the development of low cost enzymeless electrochemical biosensors via additive manufacturing

Grant number: 20/00325-0
Support type:Scholarships in Brazil - Post-Doctorate
Effective date (Start): November 01, 2020
Effective date (End): July 24, 2021
Field of knowledge:Interdisciplinary Subjects
Principal researcher:Lucio Angnes
Grantee:Diego Pessoa Rocha
Home Institution: Instituto de Química (IQ). Universidade de São Paulo (USP). São Paulo , SP, Brazil

Abstract

3D printing is the most popular form of Additive Manufacturing (AM). This technology allows the fabrication of three-dimensional objects with the most varied applications in many fields, especially in the chemistry area. Various commercialized electrochemical devices, such as printed electrodes and mainly electrochemical cells, have relatively high costs. Therefore, AM is promising, from the economic and scientific point of view, in the construction of improved electroanalytical devices. To achieve this, the popularization of 3D printers allowed these devices to be printed quickly at very low costs, requiring only one design (designed in specialized software) and polymeric materials (thermoplastics). In addition to AM making it possible to create new analytical apparatus in non-commercially available configurations, it is possible to print modified conductive electrodes with different materials usable for the analysis of different analytes. Thus, the present project aims at the development of modified filaments (composites) with carbon conductive materials (graphene, carbon black, and carbon nanotubes) and metallic nanoparticles (copper, nickel, and gold), from a filament extruder, for the manufacture of low cost enzymeless electrochemical biosensors for the selective determination of analytes of biologic importance, among them glucose, uric acid and lactate in biologic samples. In the manufacture of these new sensors will be evaluated the best proportions between modifying materials and thermoplastics, taking into account the electrochemical response and printability. The characterization of the modified filaments will be performed through techniques such as microscopy, Raman, infrared, electrochemical impedance spectroscopy, among others. (AU)

News published in Agência FAPESP Newsletter about the scholarship:
Articles published in other media outlets (0 total):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Scientific publications (8)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
SANTOS, BERLANE G.; GONCALVES, JOSUE M.; ROCHA, DIEGO P.; HIGINO, GIANE S.; YADAV, THAKUR P.; PEDROTTI, JAIRO J.; AJAYAN, PULICKEL M.; ANGNES, LUCIO. Electrochemical sensor for isoniazid detection by using a WS2/CNTs nanocomposite. SENSORS AND ACTUATORS REPORTS, v. 4, NOV 2022. Web of Science Citations: 0.
ROCHA, DIEGO P.; ATAIDE, VANESSA N.; DE SIERVO, ABNER; GONSALVES, JOSUE M.; MUNOZ, RODRIGO A. A.; PAIXA, THIAGO R. L. C.; ANGNES, LUCIO. Reagentless and sub-minute laser-scribing treatment to produce enhanced disposable electrochemical sensors via additive manufacture. CHEMICAL ENGINEERING JOURNAL, v. 425, DEC 1 2021. Web of Science Citations: 5.
GONCALVES, JOSUE M.; LIMA, IRLAN S.; AZEREDO, NATHALIA F. B.; ROCHA, DIEGO P.; DE SIERVO, ABNER; ANGNES, LUCIO. iVCe-Layered Double Hydroxide as Multifunctional Nanomaterials for Energy and Sensor Application. FRONTIERS IN MATERIALS, v. 8, NOV 29 2021. Web of Science Citations: 0.
PEREIRA, JIAN F. S.; ROCHA, RAQUEL G.; CASTRO, SILVIA V. F.; JOAO, AFONSO F.; BORGES, PEDRO H. S.; ROCHA, DIEGO P.; DE SIERVO, ABNER; RICHTER, EDUARDO M.; NOSSOL, EDSON; GELAMO, V, ROGERIO; MUNOZ, RODRIGO A. A. Reactive oxygen plasma treatment of 3D-printed carbon electrodes towards high-performance electrochemical sensors. SENSORS AND ACTUATORS B-CHEMICAL, v. 347, NOV 15 2021. Web of Science Citations: 0.
ATAIDE, VANESSA N.; ROCHA, DIEGO P.; DE SIERVO, ABNER; PAIXAO, THIAGO R. L. C.; MUNOZ, RODRIGO A. A.; ANGNES, LUCIO. Additively manufactured carbon/black-integrated polylactic acid 3Dprintedsensor for simultaneous quantification of uric acid and zinc in sweat. Microchimica Acta, v. 188, n. 11 NOV 2021. Web of Science Citations: 0.
GONCALVES, JOSUE M.; MARTINS, PAULO R.; ROCHA, DIEGO P.; MATIAS, TIAGO A.; JULIAO, MURILO S. S.; MUNOZ, RODRIGO A. A.; ANGNES, LUCIO. Recent trends and perspectives in electrochemical sensors based on MOF-derived materials. JOURNAL OF MATERIALS CHEMISTRY C, v. 9, n. 28, p. 8718-8745, JUL 28 2021. Web of Science Citations: 0.
GONCALVES, JOSUE M.; ROCHA, DIEGO P.; SILVA, MURILLO N. T.; MARTINS, PAULO R.; NOSSOL, EDSON; ANGNES, LUCIO; ROUT, CHANDRA SEKHAR; MUNOZ, RODRIGO A. A. Feasible strategies to promote the sensing performances of spinel MCo2O4 (M = Ni, Fe, Mn, Cu and Zn) based electrochemical sensors: a review. JOURNAL OF MATERIALS CHEMISTRY C, v. 9, n. 25, p. 7852-7887, JUL 7 2021. Web of Science Citations: 3.
GONCALVES, JOSUE M.; SILVA, MURILLO N. T.; NAIK, KUSHA KUMAR; MARTINS, PAULO R.; ROCHA, DIEGO P.; NOSSOL, EDSON; MUNOZ, RODRIGO A. A.; ANGNES, LUCIO; ROUT, CHANDRA SEKHAR. Multifunctional spinel MnCo2O4 based materials for energy storage and conversion: a review on emerging trends, recent developments and future perspectives. JOURNAL OF MATERIALS CHEMISTRY A, v. 9, n. 6, p. 3095-3124, FEB 14 2021. Web of Science Citations: 5.

Please report errors in scientific publications list by writing to: cdi@fapesp.br.