Scholarship 23/01695-4 - Aprendizado computacional, Aprendizado federado - BV FAPESP
Advanced search
Start date
Betweenand

Validation and improvement of machine learning models for predicting cardiovascular events

Grant number: 23/01695-4
Support Opportunities:Scholarships in Brazil - Technical Training Program - Technical Training
Start date: April 01, 2023
End date: March 31, 2025
Field of knowledge:Physical Sciences and Mathematics - Computer Science
Agreement: European Commission (Horizon 2020)
Principal Investigator:Paulo Mazzoncini de Azevedo Marques
Grantee:Hilton Vicente César
Host Institution: Faculdade de Medicina de Ribeirão Preto (FMRP). Universidade de São Paulo (USP). Ribeirão Preto , SP, Brazil
Associated research grant:21/06137-4 - Predicting cardiovascular events using machine learning, AP.R
News published in Agência FAPESP Newsletter about the scholarship:
More itemsLess items
Articles published in other media outlets ( ):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Scientific publications
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
SHIMIZU, GILSON YUUJI; SCHREMPF, MICHAEL; ROMAO, ELEN ALMEIDA; JAUK, STEFANIE; KRAMER, DIETHER; RAINER, PETER P.; CARDEAL DA COSTA, JOSE ABRAO; DE AZEVEDO-MARQUES, JOAO MAZZONCINI; SCARPELINI, SANDRO; SUZUKI, KATIA MITIKO FIRMINO; et al. Machine learning-based risk prediction for major adverse cardiovascular events in a Brazilian hospital: Development, external validation, and interpretability. PLoS One, v. 19, n. 10, p. 23-pg., . (21/06137-4, 22/16683-9, 23/01695-4)
SHIMIZU, GILSON YUUJI; ROMAO, ELEN ALMEIDA; CARDEAL DA COSTA, JOSE ABRAO; MAZZONCINI DE AZEVEDO-MARQUES, JOAO; SCARPELINI, SANDRO; FIRMINO SUZUKI, KATIA MITIKO; CESAR, HILTON VICENTE; AZEVEDO-MARQUES, PAULO M.. External validation and interpretability of machine learning-based risk prediction for major adverse cardiovascular events. 2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, v. N/A, p. 6-pg., . (14/50889-7, 21/06137-4, 22/16683-9, 23/01695-4)