Advanced search
Start date
Betweenand


Mixed culture, chemical and genetic manipulation of microorganisms:strategies for diversifying the secondary metabolism.

Full text
Author(s):
Fernanda Oliveira das Chagas
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Monica Tallarico Pupo; Fernando Batista da Costa; Massuo Jorge Kato; Gabriel Padilla Maldonado; Maria Fatima das Graças Fernandes da Silva
Advisor: Monica Tallarico Pupo; Eric Schmidt
Abstract

Recently, genetic studies have shown that several b acteria and fungi hold a greater biosynthetic potential than the amount of secondary metabolites isolated from these microorganisms. The discovery of novel bioactive na tural products is limited by the inability of microorganisms to express all their biosynthetic pa thways in laboratory conditions. Therefore, alternative strategies to induce the production of microbial natural products are required. Mixed cultures of microorganisms are a strategy tha t has been used to mimic more natural conditions of growth. Furthermore, the addition of chemical and epigenetic modulators to the microbial cultures can also stimulate the productio n of compounds by activating cellular mechanisms in response to stress conditions or by c hanging the transcription rate of certain genes, due to changes in the chromatin folding. Alt ernatively, the induction of some genes, and even the diversification of secondary metabolis m, can be achieved by genetic engineering, by manipulating genes of interest. The endophytic strain Alternaria tenuissima SS77, which was selected for the experiments of che mical and epigenetic modulation, had changed its secondary metabolism after treatment wi th different modulators. Probably, the observed effect was due to a nonspecific elicitatio n of those modulators. Moreover, the mixed cultures of this fungus with the endophytic fungus Nigrospora sphaerica SS67, isolated from the same host plant ( Smallanthus sonchifolius ), led to the isolation of two new polyketides, belonging to perylene quinone class, along with ano ther one already reported in the scientific literature. Three strains of actinobacteria and fiv e fungi, all endophytes of Lychnophora ericoides , were selected to grow in microbial mixed cultures comprising one bacteria and one fungus. Changes in the metabolic profile of the mix ed culture of Phomopsis sp. FLe6 with Streptomyces albospinus RLe7 were the most obvious, and then further studi es were focused on this mixed culture. Many culture conditions were analyzed and different results were obtained. In some cases, the development of the fun gal strain was inhibited by bacteria, and in other cases was observed the opposite. Similarly , there was a remarkable inhibition of the production of certain secondary metabolites in the presence of the challenging strain, but the eliciting of others was also observed. The extracts of the single cultures of these microorganisms also showed changes in metabolic pro files due to culture conditions. The metabolites produced by the fungus Phomopsis sp. FLe6 and the actinobacteria S. albospinus RLe7 were isolated and characterized. The results show that interactions between endophytic microorganisms are quite complex and are influenced by various external factors that often can not be previously determined. Theref ore, establishing a suitable mixed culture to elicit the production of secondary metabolites m ay require some attempts. Still, the expected results can be achieved using this strateg y. Unlike the endophytic strains, that was chemically manipulated by different strategies, the sequenced strain Fusarium heterosporum ATCC 74349 was genetically manipulated to construct a hybrid PKS-NRPS biosynthetic gene containing the NRPS portion of the hybrid gene of e quisetin and a cryptic PKS gene of Aspergillus fumigatus . It was expected that hybridized strain could be a ble to produce the secondary metabolite genetically planned, however, after its cultivation, this product was not detected in any extracts, and some possible reasons are discussed. Although the expected results have not been obtained, studies that contri bute to increasing the understanding of fungal megasynthases are extremely valuable (AU)

FAPESP's process: 09/17695-6 - New strategies to access microbial natural products: mixed cultures of endophytes, chemical and epigenetic remodeling of biosynthetic pathways
Grantee:Fernanda Oliveira das Chagas
Support Opportunities: Scholarships in Brazil - Doctorate