Advanced search
Start date
Betweenand


Progression and inhibition of artifical caries lesions in human and bovine substrate evaluated by surface microhardness

Full text
Author(s):
Francisco Carlos Rehder Neto
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Odontologia de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Monica Campos Serra; Silmara Aparecida Milori Corona; Renato Herman Sundfeld
Advisor: Monica Campos Serra
Abstract

The aim of the study was to compare caries-like lesions progression in human and bovine substrate, and also investigate pastes containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and calcium sodium phosphosilicate (VB) as remineralising agents to control caries lesion progression. This work was divided into two parts. Initially, the model for caries lesions induction was tested and human and bovine substrates were compared. Sixty specimens of enamel (30 bovine and 30 human) and sixty dentin specimens (30 bovine and 30 human) were submitted to a pH cycle protocol to induce artificial caries lesions. Human and bovine specimens were pretested for Knoop microhardness under 25 g load applied for 5 s for enamel and 10 g load applied for 10 s for dentin. Each pH cycle consisted of immersion of the specimens for 1 hour in demineralizing solution and 22 hours in remineralising solution, for eight days for enamel and for three days for dentin. Surface Knoop microhardness (SMH) was daily measured at each pH cycle conduced. Data were analyzed by ANOVA as a factorial design (2x9) for enamel, and (2x4) for dentin substrate. Regression analyses were used to model the SMH values of human and bovine (enamel and dentin) over the time. Regression analyses of the data showed that the SMH values for both human and bovine (enamel and dentin) decreased in an exponential model with the number of pH cycles. The second stage of this work aimed to evaluate the progression of artificial caries lesions in bovine enamel in the presence or absence of potentially remineralising agents. Enamel slabs of bovine teeth were embedded in polyester resin and had their enamel surfaces serially polished, and tested for surface microhardness (SMH) with a static load of 25 g applied for 5 s. After preformed incipient caries-like lesions they were evaluated by microhardness (SMHpost-lesion) and randomly assigned to five treatment groups(n=15): 1) regular dentifrice (RE, 1.100 ppm F, Sensodyne, GSK); 2) dentifrice with bio glass (VB, Oravive); 3) amorphous calcium phosphate stabilized by casein phosphopeptide (CPP-ACP, MI Paste, GC America); 4) CPP-ACP with 900 ppm F (MI Plus Paste, GC America) and 5) Control group not exposed to any remineralising agent (n=15). Treatments were applied five times, after the demineralization period in the cariogenic challenges. Post-treatments SMH measurements were conduced (SMHpost-tratment). The ANOVA applied to the percentage difference between SMH post-treatment/SMHpost-lesion, reveals a significant difference among the treatments (p=0.0161). The specimens exposed to VB (7.1%), RE (6.7%) and CPP-ACP+F (3.8%), showed lower mineral loss content in relation to those that was used as a control group (-11.0%). The group CPP-ACP (3.2%) did not differed from the other groups. In conclusion, since the bovine substrate presents some advantageous characteristics over the human substrate and the similar behavior observed between both substrates for enamel and dentin. The use of bovine tooth can be considered a viable and practical alternative to human tooth in dental caries research and for the second stage the remineralizing effect seems to be dependent of the remineralizing agent used, which reflects over the control of caries lesions progression. (AU)

FAPESP's process: 06/05277-7 - Evaluation of mineral content loss in artificial caries lesions by polarized light microscopy analysis in relation to microhardness
Grantee:Francisco Carlos Rehder Neto
Support Opportunities: Scholarships in Brazil - Master