Advanced search
Start date
Betweenand


Toxicity tests on tracheal explants and respiratory epithelial cells exposed to diesel exhaust particles: a study on gene expression, cytotoxicity, and cell signaling

Full text
Author(s):
Robson Seriani
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Mariangela Macchione; Maria Lucia Zaidan Dagli; Fernanda Degobbi Tenorio Quirino dos Santos Lopes; Carla Máximo Prado; Rodolfo de Paula Vieira
Advisor: Mariangela Macchione
Abstract

Diesel exhaust particles (DEPs) from diesel engines have toxic properties that result from their physical and chemical characteristics. DEPs are able to activate intracellular signaling pathways and induce metabolic changes to cells and tissues of the human respiratory system. This dissertation sought to evaluate: 1) the profile of mucins and the epithelial changes to the tracheal explants of BALB/c mice exposed to both DEP and DEP treated with nitric acid and organic solvents (50 and 100 ug/mL; and 2) human bronchial epithelial cells (BEAS-2B) in culture after their exposure to both DEP and DEP treated with hexane (DEP/HEX) at 100 ug/mL in order to determine MAPK (ERK/JNK) activation, cytotoxicity, cytoskeletal integrity, cell viscoelasticity and gene expression of the enzymes involved in oxidative stress and apoptosis. The results show that, in tracheal explants, DEP causes a significant increase (compared to the control) in the quantity of acidic mucus (p=0.001), a decrease in alkaline mucus (p=0.001), a decrease in mixed mucus (p=0.001), an increase in vacuolization (p=0.001), an increase in apoptosis (p=0.001), along with an increase in pERK and a decrease in pJNK, and vice versa. The explants that were exposed to DEP and DEP/MET were found to have significantly higher quantities of acidic mucus (p=0.01), and DEP/HEX caused an increase in mucus extrusion (p=0.007), which was likely due to inorganic enrichment. In the case of BEAS-2B cells, the results obtained from epithelial cells exposted to DEP and DEP/HEX revealed alterations in the cytoplasmic membrane, the mitochondria, and the cytoskeleton. The cells exposed to DEP alone at low concentrations (15 ug/mL) experienced alterations in the genes involved in apoptosis (BCL-2 and Caspase-3; p=0.05 and p=0.01, respectively), as well as oxidative stress [(SOD1, SOD2, and GPx; p=0.01 )], and changes to CYP1A1 (p=0.01) (AU)