Topological methods for the study of existence, multiplicity and bifurcation of so...
Asymptotic dynamics of delayed nonlinear reaction and diffusion equations
![]() | |
Author(s): |
Katia Andreia Gonçalves de Azevedo
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Carlos. |
Institution: | Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB) |
Defense date: | 2002-04-18 |
Examining board members: |
Luiz Augusto da Costa Ladeira;
Sergio Muniz Oliva Filho;
Gerson Petronilho;
Jair Silverio dos Santos;
Plácido Zoega Táboas
|
Advisor: | Luiz Augusto da Costa Ladeira |
Abstract | |
In this work we study the retarded reaction-diffusion equation {∂U/∂t (t,x) = ∂2U/∂x2(t, x) + kU(t,x) + k/δ ∫-r + δ-r g(U(t,x), U(t + s, x)ds, U(t, 0) = U(t, π) = 0, t≥0 U(t,x) = ψ(t, x), (t, x) ∈ [-r, 0] X [0, π]. We show the existence of a sequence of values {Tkn}n= 0,1,2... of the parameter T such that a Hopf bifurcation occurs when the delay passes through each value {Tkn}. The main techniques used here are some results on nonlinear eigenvalue problems, the analysis of the characteristic equation of the linearized problem, the Liapunov-Schmidt method and the Implicit Function Theorem. (AU) |