Advanced search
Start date
Betweenand


Evaluation of the mutagenic potential of textile dyes using the micronucleus assay

Full text
Author(s):
Cibele Aparecida Cesila
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Danielle Palma de Oliveira; Lusania Maria Greggi Antunes; Denise Crispim Tavares
Advisor: Danielle Palma de Oliveira
Abstract

Dyes and pigments are important compounds in different areas, for example in the medicine, cosmetic, food, clothing, plastic, rubber, and other industries. Currently, the production of these compounds is around 7 x 106 tons per year all over the world, with 26,500 tons per year being consumed in Brazil. The production of dyes, despite its economic relevance, is a subject of environmental concern, because 2 to 50 % of dyes are discharged directly into wastewater during their production process, corresponding to approximately 280,000 t of textile dyes being discharged in the environment worldwide through industrial effluents every year. In this context, the studies of the risk assessment of the dyes and their degradation products are very relevant to assess the impact of these compounds to the human health and the ecosystem. The Acid Black 210 is an azo dye commonly used in the dyeing of leather, cotton, and wool, representing approximately 80 to 90 % of the black dye used in the industry. However, there are not published studies in the scientific literature about the genotoxic potential and the toxicological concerns of this dye, including its monitoring presence in surface waters. Preliminary studies in our laboratory had shown that the Disperse Red 73 dye induces mutagenicity in the TA98 and TA100 Salmonella typhimurium strains and it is extremely toxic to Daphnia similis in acute toxicity tests. Thus, this study aimed to evaluate the mutagenic potential of the dyes Acid Black 210 and Disperse Red 73 through the micronucleus assay in HepG2 cell, and the acute ecotoxicological effects of the dye Acid Black 210 using the Daphnia similis test. Additionally, it was performed cell proliferation tests, the evaluation of the cell death by apoptosis and necrosis, and the cell cycle arrest assay using the Acid Black 210 dye in HepG2 cells. The results obtained in this study showed that the Disperse Red 73 dye did not induce chromosomal damage in HepG2 cells under the conditions tested. Acid Black 210 dye did not cause cell death by apoptosis and/or necrosis, at higher concentrations cause arrest cell cycle and induced cytotoxicity in cell proliferation assays. Micronucleus assays performed with the dye Acid Black 210 showed inconclusive. Therefore, the results of this study show that there is no evidence that the Disperse Red 73 dye induces chromosomal mutations and suggest that the Acid Black 210 dye has low toxicity. However, other tests will be required to do environmental and human risk assessments of these dyes. The results of this study along with other results of our research group will provide these additional requirements. (AU)

FAPESP's process: 13/06172-8 - Evaluation of the mutagenic potential of textile dyes using the micronucleus assay
Grantee:Cibele Aparecida Cesila
Support Opportunities: Scholarships in Brazil - Master