Advanced search
Start date
Betweenand


Phenolic compounds of agroindustrial residues: identification, biological properties and application in lipid-based food matrix

Full text
Author(s):
Priscilla Siqueira Melo
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Severino Matias de Alencar; Helena Teixeira Godoy; Masaharu Ikegaki; Jonas Augusto Rizzato Paschoal; Pedro Luiz Rosalen
Advisor: Severino Matias de Alencar; Thais Maria Ferreira de Souza Vieira
Abstract

The solid waste generation by agroindustrial activities have created the demand for a technology reuse of these materials. The objective of this study was to evaluate the bioactive and technological potential of agroindustrial residues as sources of phenolic compounds with antioxidant activity. Agroindustrial residues from wineries, from industries producing frozen fruit pulps (acai, caja, cupuaçu and soursop) and from the processing of coffee and orange, were analyzed. Initially, a study using a multivariate experimental planning with central composite rotatable design was performed, whose results were evaluated by response surface technique. After, it was made the screening based on the antioxidant activity and the phenolic characterization of hydroalcoholic extracts of optimized agroindustrial residues. According to the results obtained for the antioxidant activity the residues grape stem from the variety Chenin Blanc (EC) and açaí seed (SA) were selected and followed to the steps of concentration and bioguided fractionation of their(s) molecule(s) bioactive(s), which were subsequently identified by UHPLC-ESI-LTQ-MS. Crude and concentrated extracts were evaluated in vitro for the deactivation capability of reactive oxygen species (peroxyl radicals, superoxide and hypochlorous acid) and then applied to soybean oil, emulsion and liposome suspension in order to evaluate the effectiveness these extracts as natural antioxidant in lipid matrices. Intermediate concentrations of ethanol (40-60%) and high temperature (96 °C), except for acai seed (25 °C) were the optimal conditions for the extraction of antioxidants from agroindustrial residues. Epicatechin, gallic acid, catechin and procyanidin B1 compounds were the most frequent molecules, when assessed by HPLC-DAD. The EC had the highest overall antioxidant activity and SA the greatest activity between residues of fruit pulp, orange and coffee. Concentration of the crude extracts of EC and SA, by Amberlite XAD®-2 resin, produced a significant increase in antioxidant activity. Furthermore, crude and concentrated extracts showed antiproliferative and anti-inflammatory activity. The concentrated extracts were fractionated by Sephadex LH-20, from which it was possible to identify four fractions of greater bioactivity for the EC and three for SA. Procyanidin B1, catechin, epicatechin and resveratrol were identified in the concentrated extract and EC fractions. Eighteen polymeric procyanidins, catechin, epicatechin were the major compounds identified in SA by UHPLC-ESI-LTQ-MS. Resveratrol has also been found for the first time in SA. When evaluated in soybean oil, EC and SA demonstrated pro-oxidant activity. However, high antioxidant activity was observed when these samples were evaluated on lipid colloidal systems, for delayed oxygen consumption in an emulsion oil/water and the induction period in the production of conjugated dienes in a liposome suspension. Therefore, the agroindustrial residues EC and SA have technological potential for industrial reuse and, thus, can be considered as raw material for obtaining antioxidant-rich extracts or by extraction of natural antioxidants useful for pharmaceutical and/or food industries. (AU)