Advanced search
Start date
Betweenand


The use of concentrated solar power in the steam-gasification of biomass - design of a solar chemical reactor.

Full text
Author(s):
Vinicius Eduardo Ribas
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
José Roberto Simões Moreira; Enio Pedone Bandarra Filho; Suani Teixeira Coelho
Advisor: José Roberto Simões Moreira
Abstract

From decades, solar energy has instigated researchers worldwide due to its enormous potential. With raising concern for the environment and the search for renewable energy sources, the interest in using the Sun as a power supply grew even more. Despite challenges as the solar seasonality and intermittence, and difficulties transport its energy, innovative storage techniques aim to mitigate those issues. A thermochemical alternative is the production of solar fuels - fuels obtained from concentrated solar power (CSP) - which can be stocked and transported to the time and place there is demand. A forthcoming application in this field is biomass steam-gasification for syngas production (CO + H2). Gasification increases the thermal potential of liquid and solid biomass by means of an endothermic reaction that transfers solar energy (via radiation concentrators) to chemical bonds, re-combining the atoms as syngas (hydrogen and carbon monoxide). This gas mixture, besides its thermal potential, is a raw material for numerous processes in chemical industry. The purpose of this process is to obtain a fuel more homogenous and easy to manipulate. The gasification is an important alternative to biomass energy use, once it is generally heterogeneous. Thus, gasifiers enable the use of wood, algae, solid waste, agricultural byproducts, and other organic matter as power supplies. Therefore, this project presents the study of solar concentrators use in the steamgasification of biomass and the conception of a solar chemical reactor for laboratoryscale tests for the future steps of the research in this field. Models and bibliographic references points to the technical feasibility of solar steam-gasification of biomass, verifying a significant energy gain and carbon emission reduction comparing to direct burn of biomass. Ultimately, the dissertation presents the constructive and operational parameters of a small-scale gasifier. (AU)

FAPESP's process: 13/03722-7 - Study of the use of solar concentrators in the process of steam-gaseification of biomass: solar chemical reactor modeling
Grantee:Vinicius Eduardo Ribas
Support Opportunities: Scholarships in Brazil - Master