Advanced search
Start date
Betweenand


In situ gelling liquid crystalline system for intratumoral and localized delivery of siRNA for skin cancer therapy

Full text
Author(s):
Livia Neves Borgheti Cardoso
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Maria Vitoria Lopes Badra Bentley; Kamilla Swiech Antonietto; Armando da Silva Cunha Junior; Priscyla Daniely Marcato Gaspari
Advisor: Maria Vitoria Lopes Badra Bentley
Abstract

RNA interference (RNAi) is a mechanism in which small interfering RNA molecules (siRNA) inhibit gene expression, by causing the messenger RNA degradation. Thus, siRNA is a promising therapy for the treatment of several diseases such as cancer. However, the development of delivery systems able to protect the siRNA from degradation and promote its cell uptake is essential for therapeutic use of siRNA. Among the delivery systems, the localized delivery system such as in situ gelling delivery system, have advantages over systemic administration. Precursor fluid formulations (FFP), which forms in situ viscous liquid crystalline systems, can be obtained from amphiphilic lipids that absorb water from the environment and self-assembling. In this context, the present study aimed to evaluate the in situ gel formed from the FFP (G-FFP), composed of monoglycerides (MO), polyethyleneimine (PEI), propylene glycol (PG) and Tris buffer, as localized delivery system for siRNA in skin cancer therapy. The results showed that the G-FFP is a mixture of cubic and hexagonal phase. The G-FFP sustained release of siRNA and the siRNA is released complexed with PEI. The FFP can be sterilized by membrane filtration at 0.22 ?m. FFP was able to complex high siRNA concentration (15 mM) and protect the siRNA from degradation. The cytotoxicity was dependent on the FFP concentration, when FFP was complexed with siRNA it was observed a decreased in toxicity. The siRNA released from G-FFP was uptake by A431, FaDu, HeLa, A549, WM35/DLC2-GFP and MCF-7/DLC2-GFP cells. In addition, specific siRNAs released from G-FFP were able to reduce the expression of Firefly luciferase in HeLa and FaDu cells, but they were unable to reduce the expression of the epidermal growth factor receptor (EGFR) in A431, HeLa, A549 and FaDu cells. The reduction of expression of EGFR in A549 cells was observed when siRNA therapy was combined with photochemical internalization. From these results, can be inferred that the efficiency of siRNA transfection and knockdown was dependent on both the type of cell line and the desired target protein. In vivo studies showed that the gel was formed in situ after intratumoral injection. 3 days after intratumoral administration of FFP containing EGFR specific siRNA, 30% of reduction in the tumors size compared to tumors treated with FFP without siRNA was observed. Based on these results, could be concluded that the developed system is a potential siRNA delivery system when administered subcutaneously and intratumoral, because it was able to complex siRNA, promoted its cell uptake and the siRNA released into the cytoplasm of the cell may reduce the expression of target proteins (AU)

FAPESP's process: 12/15341-5 - In situ gelling liquid crystalline system of intratumoral administration for sustained release of siRNA in skin cancer therapy.
Grantee:Lívia Neves Borgheti Cardoso
Support Opportunities: Scholarships in Brazil - Doctorate