Advanced search
Start date
Betweenand


Studies of adenosine kinase isoform 1, hypoxanthine-guanine phosphoribosyltransferase isoforms 1, 2 and 3, adenylosuccinate lyase, adenylosuccinate synthetase enzymes from Schistosoma mansoni

Full text
Author(s):
Larissa Romanello
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos
Defense date:
Examining board members:
Humberto D'Muniz Pereira; Andrea Soares da Costa Fuentes; Carlos Henrique Inacio Ramos; Ariel Mariano Silber; Richard John Ward
Advisor: Humberto D'Muniz Pereira
Abstract

Schistosoma mansoni is the parasite responsible for schistosomiasis, disease that affects about 300 million people worldwide, and does not have the purine de novo pathway, depending entirely on the purine salvage pathway to supply its demands on purines. Currently, both direct treatment and most disease control initiatives, rely on chemotherapy using a single drug, praziquantel. Concerns over the possibility of resistance developing to praziquantel, has stimulated efforts to develop new drugs for the treatment of schistosomiasis. The purine salvage pathway has been reported as a potential target for developing new drugs against schistosomiasis. Adenosine kinase (AK), hypoxanthine-guanine phosphoribosyltransferase (HGPRT), adenylosuccinate lyase (ADSL), adenylosuccinate synthetase (ADSS) are key enzymes in this pathway. This work is part of a larger project aimed at obtaining all the structures of enzymes involved in purine salvage pathway of Schistosoma mansoni. The cDNA corresponding to the enzymes was amplified and cloned in vector pOPIN, AK isoform 1, HGPRT isoform 1 and ADSL were expressed in E. coli Lemo 21 (DE3) and HGPRT isoform 3 in E. coli B834(DE3); purified in cobalt agarose column, concentrated and crystallized in several conditions of the Morpheus (Molecular Dimensions) crystallization kit at the Oxford Protein Production Facility (OPPF) in Harwell UK. The data collection by xray diffraction were performed at Diamond Light Source UK. Two ADSL structures were obtained, ADSL in complex with AMP at 2.36Å resolution and ADSL Apo form at 2.14Å The analysis revealed a tetrameric structure highly conserved between ADSLs, and this oligomerization state is required since residues three of the four subunits comprise the active site. Despite the active site being highly conserved between human ADSL and SmADSL, the dimeric interface of these enzymes it has been shown sufficiently distinct, which may represent a potential target for the development of an inhibitor. The ADSL enzymatic activity assay showed an endothermic reaction, indicating the contribution of the entropy related to the large quantity of water molecules present in the active site is important for the reaction kinetics. After several optimization experiments of HGPRT1 crystals and about 200 crystals tested was obtained a structure in complex with IMP at 2.8Å resolution. The structure analysis revealed a tetrameric structure. Despite the subunits do not share the active site, this oligomerization state is required, since residues that make up the active site are also involved in interactions in dimeric interface, guiding the invariable residue Arg206 toward the active site. Four mutations were identified in the region of the active site between SmHGPRT and human HGPRT: Ile149Met, Pro176Arg, Val189Ile e Arg192Lys. These structures increase the important structural information available about the Schistosoma mansoni purine salvage pathway and how it can be selectively private resources. (AU)

FAPESP's process: 12/05532-8 - Structural and kinetic studies of adenosine kinase, hypoxanthine-guanine phosphoribosyltransferase, Adenilsuccinate synthetase and Adenilsuccinato lyase enzymes from Schistosoma mansoni
Grantee:Larissa Romanello
Support type: Scholarships in Brazil - Doctorate