Advanced search
Start date
Betweenand


Hydrolysis and fermentation of office paper in lysimeter for recovery of compounds of biotechnological interest

Full text
Author(s):
Lívia Silva Botta
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Maria Bernadete Amâncio Varesche; Lorena de Oliveira Pires; Katia Sivieri; Valéria Reginatto Spiller; Marcelo Zaiat
Advisor: Maria Bernadete Amâncio Varesche
Abstract

This study evaluated the production of compounds of biotechnological interest and potential energy vectors from office paper in lysimeters (20L), using a microbial consortium purified from rumen fluid. A central composite design (CCD) was performed to verify the influence of three independent variables on paper conversion to hydrogen and other organic compounds in bench lysimeter. The tested variables were: mass of paper (x1: 500g, 750g and 1000g), moisture content (x2: 50%, 65% and 80%), and incubation temperature (x3: 35°C, 45°C and 55°C). The dependent variables of CCD were production of hydrogen (Y1: mmol), acetic acid (Y2: mg/L), ethanol (Y3:mg/L) and metanol (Y4:mg/L). For monitoring the lysimeters in relation to paper hydrolysis and fermentation, analyses of biogas (H2, N2, CO2 and CH4) and the organic compounds' concentrations in the leachate, such as, total sugars, chemical oxygem demand, volatile organic acids (VOA's) and alcohols were conducted during operation. Alcalinity, pH and total solids content of the leachate were also monitored. Massive sequencing of rRNA 16S (Illumina) was carried out for identification of the microorganisms of the in natura rumen fluid, the purified consortium, and those collected from lysimeters R2, R5 and R9. Hydrogen production was detected only in lysimeters R1 (25 mmol), R2 (35 mmol) and R5 (3 mmol), all of them operated with 80% of moisture content. In R1 and R2, high concentrations of acetic acid, of 21.500 and 17.000, respectively, were due to the likely occurrence of homoacetogenesis. Under thermophilic temperature, especially R5, the hydrogen production was detected in low quantity, and the highlight was the production of ethanol and methanol, with concentrations around 2.300 and 5.600 mg/L, respectively. At 80% moisture condition (R1, R2, R5, R6), high percentages of paper removal and sharp fermentative activity were observed. However, at lower moisture conditions, the microbial growth was unfavored, independent of the temperature. Low paper consumption and reduced concentrations of OVA's and alcohols were detected in R3, R4, R7 and R8, all of them operated with 50% of moisture content. In R9 and R10, operated at 45°C and 65% of moisture, there was also attenuated production of VOA\'s and alcohols, with absence of hydrogen. According to CCD statistical analysis, paper moisture content had positive effect statistically significative on hydrogen, acetic acid and etanol production. The temperature had positive effect on hydrogen and acetic acid production. And the mass of paper dit not have effect statistically significative for any dependent variables. The most abundant bacterial genus was: Prevotella in the in natura rumen fluid (F.N.) Dysgonomonas in the purified consortium and R2 (35 oC), Thermicanus in R5 (55°C) and Phaeospirillum in R9 (45° C). In conclusion, moisture content was the main parameter to promote paper hydrolysis and fermentation; temperature was the principal variable that influenced the structure of microbial community, confirmed by the different metabolic route observed under mesophilic and thermophilic conditions; and the production yields of the compounds were not influenced by the mass of paper added to the lysimeters. (AU)

FAPESP's process: 13/04200-4 - Hydrogen Production from Paper in Lysimeter by Cellulolytic Fermentation
Grantee:Lívia Silva Botta
Support Opportunities: Scholarships in Brazil - Doctorate