Advanced search
Start date
Betweenand


Evaluation by bone densitometry and 3D micro-computed tomography of chitosan, hydroxyapatite and collagen composite as bone substitute in bone defect experimentally induced in the tibia of sheep

Full text
Author(s):
Cinthia Lima Lhamas
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina Veterinária e Zootecnia (FMVZ/SBD)
Defense date:
Examining board members:
André Luis do Valle de Zoppa; Jose Marcos Alves; Julio Carlos Canola
Advisor: André Luis do Valle de Zoppa
Abstract

The occurrence of fractures in animals and, especially, in large animals are conditions that generate concern about the cost of treatment and the occurrence of future complications because there is the possibility of complications due to excessive load that these animals receive in their limbs. Thus, it is important the limb immobilization immediately and appropriately and assess whether it is necessary to perform surgery to stabilize the fracture. In some kinds of fractures, it might have large bone defects, mainly in comminuted fractures with extensive damage to surrounding tissue, which makes it more difficult and prolongs the consolidation time. For these reasons, scientists have been studied the use of bone substitutes in the form of bone cements to repair these defects. The study of biomaterials as bone substitutes has had great progress in last years, and those based on chitosan, hydroxyapatite and collagen had great advantage because chitosan stimulates bone regeneration, hydroxyapatite confers the hardness that the material requires, and collagen provides flexibility to the material. This project aims to assess bone repair after deploying a composite of chitosan, collagen and hydroxyapatite in bone defects experimentally induced in sheep tibiae. For assessing the degree and the time of bone healing, it was used imaging techniques like radiographic bone densitometry and 3D micro-computed tomography. Bone defects were made in the sheep tibiae in both limbs where the biomaterial was deployed in one of them, and the control was the contralateral limb. After the surgeries, the animals were submitted to radiographic exams every two weeks until 90 days postoperatively. After this period, the animals were euthanized and harvested tibiae fragments for evaluation by 3D micro-computed tomography. Through the qualitative results of images and statistical data, it was observed, radiographically, that there was a gradual absorption of the biomaterial, and also that there was no statistical difference in relation to bone mineral density between the two groups. The method of determining the X-ray BMD proved to be practical and effective, and it is a noninvasive technique. 3D micro-computed tomography revealed important information about bone porosity and bone volume between the two groups. The 3D images showed bone details that were not possible to visualize through radiographs. Thus it is a highly effective and detailed technique, but it requires patterning of all the samples in order to quantify the amounts properly. Statistical analysis showed no differences between the groups for bone volume parameters, degree of porosity and percentage of bone volume. However in the 3D images, it can be observed clearly larger amount of pores in the control samples in comparison to those with biomaterial. It is concluded from this study that the techniques of bone densitometry X-ray and 3D µCT are very effective to evaluate bone healing in sheep. Bone mineral density was higher in limbs with biomaterial and there was a higher bone volume and lower degree of porosity in the samples with biomaterial compared to the control group (AU)

FAPESP's process: 14/17084-5 - Evaluation by bone densitometry and 3D computed microtomography of (composite) the bone blankets base of chitosan, hydroxyapatite and collagen to repair experimentally induced bone defects in sheep tibiae
Grantee:Cínthia Lima Lhamas
Support Opportunities: Scholarships in Brazil - Master