Advanced search
Start date

Biotransformation of naphthoquinones by filamentous fungi and bacteria from the gastrointestinal tract and evaluation of the cytotoxic activity of the derivatives

Full text
Marcela Etchebehere Severiano
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Niege Araçari Jacometti Cardoso Furtado; Antonio Eduardo Miller Crotti; Anderson Rodrigo Moraes de Oliveira; Maria de Lourdes Teixeira de Moraes Polizeli
Advisor: Niege Araçari Jacometti Cardoso Furtado

Quinones are important organic compounds widely distributed in nature and used as colorants in cosmetics and food. These compounds are also used in medicine as anti-tumor, anti-inflammatory, antimicrobial, among other applications. Naphthoquinones are quinones related to the naphthalene system. These molecules belong to a class of toxic intermediates generated by the biotransformation of polycyclic aromatic hydrocarbons, estrogens, catecholamines and other drugs. The determination of safety and efficacy of drugs is closely related to the study of derivatives formation by in vivo metabolism reactions. Microorganisms have been used as tools to predict drug metabolism and are considered a very efficient platform of studies. Hereof, filamentous fungi are used due to their ability to promote chemical modifications that mimics in vivo liver reactions. Intestinal bacteria have also been used since they are known to modify drugs and other substances that may come into contact with the gut microbiota. Both fungi and bacteria can contribute to the elucidation of metabolic pathways of compounds, providing information about the generation of more active, inactive or toxic substances. Furthermore, biotransformation studies can be useful tools to obtain new derivatives. Hence, the goal of this work was to study the microbial metabolism of eight naphthoquinones with different substitutions (1,2-naphthoquinone, 1,4-naphthoquinone, lawsone, menadione, methoxy lawsone, plumbagin, 5-hydroxy-naphthoquinone and vitamin K1) by several species of filamentous fungi (C.elegans, A.niger, A.brasiliensis, A.alliaceus, C.echinulata, M.rouxii, A.phoenicis, A.ochraceus e R.stolonifer), intestinal bacteria (Bifidobacterium sp, L.acidophillus e E.coli) and the probiotic yeast S.boulardii. Additionally, all naphthoquinones used as substrates in biotransformation processes and the obtained derivatives were evaluated in cytotoxicity assays using normal and tumor cell lines. Initially, appropriate growth conditions were established for each microorganism. Stability studies with the substrates and the determination of appropriate extraction conditions were also carried out. The biotransformation reactions were monitored during 10 days for the filamentous fungi and during 36 h for intestinal bacteria and probiotic yeast. The most promising processes were selected to be carried out in enlarged scale for the isolation of the produced derivatives. The biotransformation of the methoxy-lawsone produced a compound encoded as BLM1 and identified as lawsone. Five metabolites encoded as BM1, BM2, BM4, BM5 e BM7 were identified and isolated from the menadione biotransformations. Regarding the cytotoxicity experiments, the naphthoquinones in general did not display high cytotoxicity when compared with the positive control doxorubicin. However, slight modifications in the naphthoquinones chemical structures were correlated to different biological responses. Additionally, the maintenance of ketone groups of the quinonoid nucleus were considered essential for the cytotoxic activity (AU)

Grantee:Marcela Etchebehere Severiano
Support Opportunities: Scholarships in Brazil - Doctorate