Advanced search
Start date
Betweenand


Nanoscale titanium surface functionalization with GDF-5: in vitro and in vivo studies

Full text
Author(s):
Renan de Barros e Lima Bueno
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Odontologia de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Paulo Tambasco de Oliveira; Allan Fernando Giovanini; Adalberto Luiz Rosa; Karina Gonzales Silvério Ruiz
Advisor: Paulo Tambasco de Oliveira
Abstract

It has been demonstrated that a nanostructured titanium (Ti) surface obtained by treatment with H2SO4/H2O2 and functionalized with GDF-5 by simple adsorption promotes the enhancement of mineralized matrix formation in osteogenic cell cultures. This study aimed to evaluate: 1) the effects of post-adsorption of major plasma proteins, i.e. albumin, fibrinogen and fibronectin, on control and nanostructured Ti surfaces, functionalized with 200 ng/mL GDF-5 by simple adsorption, on mineralized matrix formation by calvarial osteogenic cell cultures; 2) molecular and phenotypic parameters characteristics of the acquisition of the osteogenic phenotype in vitro on Ti surfaces functionalized with GDF-5 by either simple adsorption or layer by layer (LbL) films; 3) parameters of bone formation adjacent to Ti implants with a nanostructured surface functionalized with GDF-5 by the two methods described in item 2, in a rabbit tibia model. The results showed that the post-adsorption of plasma proteins did not affect the osteogenic potential of cultures, except for the inhibitory effect of albumin when post-adsorbed alone. Either the Ti surface topography or the method for GDF-5 functionalization quantitatively affected mineralized matrix formation, with the higher osteogenic differentiation for nanostructured Ti functionalized with GDF-5 by simple adsorption and the lower one for LbL films, irrespective of the Ti surface topography on which they were mounted. ALP activity was higher for cultures grown on nanostructured Ti, including those functionalized with GDF-5, whose values, however, did not necessarily correspond to the higher osteogenic activity. Despite that, all groups expressed osteoblast differentiation markers, with a remarkable increase in osteopontin and osteocalcin mRNA levels for cultures grown on LbL films. The microtomographic, histologic and histomorphometric analyses revealed no qualitative or quantitative differences in vivo among the nanostructured Ti implants, yet a tendency for enhanced bone formation was observed for the functionalized surfaces and, between them, for the LbL films. Taken together, the results of the present in vitro and in vivo studies contribute to a better understanding of osteoblast and bone tissue responses to the functionalization of Ti surfaces with GDF-5 aiming to optimize osseointegration. (AU)