Advanced search
Start date
Betweenand


Feasibility study of in vivo MRS for functional experiments

Full text
Author(s):
Carlos Sato Baraldi Dias
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Gabriela Castellano; Carlos Ernesto Garrido Salmon; Roberto José Maria Covolan
Advisor: Gabriela Castellano
Abstract

The technique of Magnetic Resonance Spectroscopy using the hydrogen nucleus (1 H -MRS) has been widely used for neurologic research for determining metabolic patterns for many pathologies. The type of information provided by this technique is unique, since it allows monitoring specific metabolic concentrations involved in cerebral function.Until now, the majority of the in vivo 1 H -MRS studies have been "static ", meaning that data acquisition is done with no concern for temporal information. The reason for this is the low signal-to-noise ratio (SNR)inherent to this technique, which imposes long acquisitions and time averaging that sacrifices temporal resolution. However, the development of function Magnetic Resonance Imaging (fMRI)and other time resolved neuroimaging techniques, that measure dynamic parameters such as blood flow, blood oxygenation rate, electric and magnetic cerebral activity, naturally brought up the interest on a technique that would allow a time resolved measure of the specific metabolic concentrations involved on cerebral metabolism - something like a functional MRS. Therefore the goal of this work was to study the feasibility of using the in vivo MRS technique for functional experiments, being the .rst of its kind performed in Brazil.To do so,initially an extensive bibliographic research was done, to comprehend not only the details of these experiments but also the neurochemistry behind the MRS signal.Next, experiments were performed and many analysis methods were developed, in order to attempt to detect temporal variations of the main metabolites present on a typical cerebral spectrum (total N-acetyl-aspartic acid: NAA, total Creatine: Cre, total Choline: Cho, Glutamine/Glutamate group: Glx and Lactate: Lac) in healthy subjects, during a visual stimulation experiment. Those experiments presented a series of difficulties and the desired high temporal resolution was not attained, achieving an average resolution of minutes - the same resolution found on the majority of the works published. We did not detect any significant variation of the NAA, Cre or Cho levels, which supports the conclusions of other works published. On the other hand, we detected variations in the Lactate levels (which increased with the stimulus, as reported in other works, but did not return to base-line levels, which disagrees with the published works), and in the Glx levels (which increased with the stimulus, returning to baseline levels after it, which agrees with the published literature). Although the results found are not totally in agreement with the published literature and it was not possible to improve the temporal resolution (compared to published works), we believe that this work leaves a significant contribution to the field, through the experimental protocols and analysis methods tested, and opens paths for future research in this area (AU)

FAPESP's process: 08/02246-9 - Combined application of dynamic MR spectroscopy and EEG techniques for studying the brain metabolism underlying spike activity in epileptic patients
Grantee:Carlos Sato Baraldi Dias
Support Opportunities: Scholarships in Brazil - Master