Advanced search
Start date
Betweenand


Development of electrochemical sensors based on films containing TCNX (Tetracyanoquinodimethane and tetracyanoethylene) for phenolics compound determination

Full text
Author(s):
Rita de Cássia Silva Luz
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Química
Defense date:
Examining board members:
Lauro Tatsuo Kubota; Auro Atsushi Tanaka; Orlando Fatibello Filho; Cláudia Longo; Edvaldo Sabadini
Advisor: Lauro Tatsuo Kubota
Abstract

In this work is describing the development of electrochemical sensors based on TCNX (tetracyanoquinodimethane and tetracyanoethylene) for phenolics compound determination. For this purpose glass carbon electrodes were modified with lithium tetracyanoethylenide (LiTCNE) and bis (tetracyanoquinodimethanide) of bis (phenantroline) of copper (II) [Cu(phen)2(TCNQ)2], both immobilized at films of poly-l-lysine (PLL). After this step, the modified electrode with LiTCNE/PLL was tested to verify the electrocatalysis capacity of the reduction of p-nitrofenol and the electrode modified with Cu (phen)2(TCNQ)2/PLL for the catechol oxidation. The techniques used for the accomplishment of this work were the cyclic voltametry, linear sweep voltametry, amperometry, differential pulse voltametry, and square wave voltametry, which were used to study the behavior of the modified electrodes, for the experimental parameters optimization, for the attainment of the kinetic parameters and analytical characterization of the sensors. Hydrodynamic studies were carried out with the aim to get information on the reduction processes and oxidation of p-nitrofenol and catechol, respectively, on the modified electrodes. Through the Koutech-Levich plot it was possible to obtain the values for the diffusion coefficient (Do) and kinetic constant of the reaction (k) for the analyte in study. The values of the diffusion coefficient and k, determined for p-nitrofenol, were 9,03 x 10 cm s and 1,65 10 x mol L s, whereas for catechol, the values of Do and k were 4,6 x 10 cm s e 1,3 x 10 mol L s, respectively. The increase of the reaction rate for p-nitrofenol and catechol was attributed to the efficient electron transfer between the studied species and immobilized electroactives species on superface the glassy carbon electrodes surface. The electrode modified with LiTCNE/PLL presented a wide linear response range, as well as sensitivity, detection and quantification limit of 0,001 up to 5 mmol L, 42,90 mA cm L mmol, 0,3 and 1,0 nmol L (n=10) for the p-nitrophenol, whereas the electrode modified with [Cu(phen)2(TCNQ)2], presented a linear range, sensitivity, detection and quantification limit of 0,005 a 5 mmol L (n=8), 16,10 mA cm, 1,5 e 5,0 nmol L, respectively, for catechol. After the application of these sensors in samples of interest, studies of addition and recovery of the analytes were carried out to evaluate the error of the methods and was verified that in both the cases a recovery percentages between 98,8 and 104,5% for p-nitrofenol and, 99,1 e 100,1 % for catechol (AU)