Advanced search
Start date
Betweenand


Structural insights into functional overlapping and differentiation among myosin V motors

Full text
Author(s):
Andrey Fabricio Ziem Nascimento
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Mário Tyago Murakami; Hernán Francisco Terenzi; Marcos Roberto de Mattos Fontes; Artur Torres Cordeiro; Jörg Kobarg
Advisor: Mário Tyago Murakami
Abstract

The class V myosins (MyoVs) are widely distributed in eukaryotic organisms from yeast to vertebrates, being one of the most characterized molecular motors of the myosin superfamily. MyoVs play a central role in the intracellular transport of vesicles, organelles, messenger RNA and proteins. MyoVs consist of a coiled-coil-stabilized dimer of two identical heavy chains and their general structure can be divided into three distinct domains: the N-terminal portion or motor domain which binds both actin and ATP; the central portion or neck formed by 6 IQ domains, responsible for the regulation and interaction with calmodulin; and the C-terminal portion that includes the coiled-coil region and the cargo-binding domain also known as globular tail domain (GTD). One of the most important issues still obscure so far is how occurs the interaction between the cargoes and the globular C-terminal domain of myosin V. Here, we have solved the globular tail domain structures of the three human MyoV paralogs (Va, Vb and Vc), revealing subtle structural changes that drive functional differentiation and a novel redox mechanism controlling the GTD dimerization process, which is unique for the MyoVc subclass. The structural changes induced by the phosphorylation of GTD have also been explored, showing that the phosphorylated state is less flexible and may be involved in the regulation of the auto-inhibition mechanism and/or in the recognition of nuclear cargoes. Moreover, the cargo- and motor-binding sites were structurally assigned indicating the conservation of residues involved in the recognition of adaptors for peroxisome transport and providing high-resolution insights into motor domain inhibition by GTD. These results contribute to the understanding of the structural requirements for cargo transport, auto-inhibition and regulatory mechanisms in myosin V motors. In addition to the results obtained with the GTD structures, some crystallographic problems, such as the phase problem, pseudosymmetry and lattice order-disorder were discussed (described in Appendices 9.3 and 9.4). Crystal pathologies such as partial or total order-disorder may be related to high values of Rfactor and Rfree, even at late stages of crystallographic refinement, or even hindering the structure determination. Problems of partial rotational order-disorder and pseudosymmetry were found in TpAbn crystals where only after a careful data processing and symmetry reduction was possible to obtain satisfactory values of residuals (Rfactor and Rfree). Moreover, data from MyoV GTDs were used as a test case for the development of new methodologies for ab initio phasing at medium and low resolution (2 ¿ 3 Å) in collaboration with the group of Prof. Dr. Isabel Usón (IBMB, Barcelona, Spain). Using the program ARCIMBOLDO we have solved the GTD-MioVb structure at 2.1 Å using only two 22-residue-long poly-Ala helix fragments (7.5% of asymmetric unit content), showing the great potential of this methodology for data at medium to low resolution (AU)

FAPESP's process: 09/14257-8 - Structural studies of the globular domain of human myosin Va responsible for intracellular transport of organelles and vesicles
Grantee:Andrey Fabricio Ziem Nascimento
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)