Advanced search
Start date
Betweenand


Evaluation of the use of modified ultrafiltration membrane with nanoclay for sewage treatment.

Full text
Author(s):
Izabela Major Barbosa
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
José Carlos Mierzwa; Ricardo Nagamine Costanzi; Mercia Regina Domingues Moretto; Theo Syrto Octavio de Souza
Advisor: José Carlos Mierzwa
Abstract

Treatment systems that combine activated sludge processes, with suspended or adhered growth, with membrane technology, Membrane Bioreactor (MBR) and Moving Bed Membrane Bioreactor (MB-MBR) are considered compact and efficient options for domestic wastewater treatment. Although this promising technology still presents the reduction of membrane performance as a relevant issue. This reduction on the membrane performance is caused by a complex phenomenon called fouling. An approach to improve the membrane performance and extend its life span is the addition of nanoclay during the synthesis process. Considering what was exposed, this study aimed the production and evaluation of composite polyethersulfone and clay nanoparticles membranes for domestic wastewater treatment. For this purpose, two pilot plants were constructed using the produced membranes for the treatment of the wastewater from the student housing at the University of São Paulo. The best composition of the modified membranes was 4% of nanoclay and 4% of pore former, both based on the polymer mass. This composition resulted in membranes with an average permeability of 293 L.m-2.h-1.bar-1 for demineralized water while membranes without modification had a permeability of less than 50 L.m-2.h-1.bar-1. For performance comparison, commercial membranes were used in the same pilot reactor. During the operation, the average Biological Oxygen Demand (BOD5) from raw effluent was 440 mg.L-1 and the removal efficiency was higher than 94%, for both treatment systems. When the MBR system started to operate with a Total Suspended Solids (TSS) concentration above 8,000 mg.L-1, it reached a stable condition in which the average permeability of the modified membranes, normalized to 20 ° C, was 1,166.1 L.m-2.h-1.bar-1, while for the commercial membranes the permeability was 326.7 L.m-2.h-1.bar-1. The average permeates flux for the MBR system was 6 L.m-2.h-1 for both the membranes types operating at stable conditions. With MBR and MB-MBR systems operating in parallel, with modified membranes, it was found that the quality of the produced permeates were similar, but the MB-MBR system presented lower operating pressures and, consequently, lower propensity to fouling. The filterability assays demonstrated that the modified membranes presented less resistance to filtration of MBR and MB-MBR mixed liquor than the commercial membranes. However, the MB-MBR mixed liquor presented less resistance to filtration. Overall, the comparison tests allowed to conclude that the nanoclay addition in the modification of the membranes resulted in longer pores, which increased the modified membranes permeability. Regarding the operation of the MBR and MB-MBR systems, the transmembrane pressure for the MB-MBR system was about 10 times lower than the transmembrane pressure in the MBR system. Higher concentrations of total suspended solids in the mixed liquor of the MBR and MB-MBR systems resulted in higher critical fluxes and, consequently, higher permeate production. (AU)

FAPESP's process: 13/06821-6 - Ultrafiltration modified membranes performance in submerged membranes bioreactors
Grantee:Izabela Major Barbosa
Support Opportunities: Scholarships in Brazil - Doctorate