Advanced search
Start date
Betweenand


Design, production and characterization of new solid forms of tuberculostatic drugs

Full text
Author(s):
Luan Farinelli Diniz
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Javier Alcides Ellena; Alzir Azevedo Batista; Chung Man Chin
Advisor: Javier Alcides Ellena
Abstract

Solid state properties of an active pharmaceutical ingredients (API) are directly related to drug performance. Among all physical and chemical properties dependent on the crystal arrangement of a drug, stability and solubility are the main ones that alter its bioavailability. In this sense, crystal engineering is a strategy to improve solid state properties of drugs. In this work, eigth new multicomponent solid forms (salts and cocrystals) of the tuberculostatic drugs ethionamide (ETH), ethambutol (ETB) and isoniazid (INH) were prepared and their crystal structures were elucidated by single crystal X-ray diffraction. In addition, the crystal modifications were also characterized by powder X-ray diffraction, infrared and Raman vibrational spectroscopy, differential scanning calorimetry, thermogravimetry and Hot-stage microscopy. Finally, equilibrium solubility studies and stability experiments in humid atmosphere were also performed. The new supramolecular modification of ETH, ethionamide nitrate salt, was designed in order to improve the aqueous solubility of the API (∼0.4 mg ml-1). This salt is the first ETH structure that has been crystallized with four independent ionic pairs (ETH+/NO3-) in the asymmetric unit. The analysis of crystal packing and intermolecular interactions allowed to establish the structural attributes that explain the lower thermal stability and high solubility (about 300 times higher) of this salt compared to the neutral ETH form. Due its high hygroscopicity, ETB is known for catalyzing the degradation of isoniazid and rifampicinin pharmaceutical formulations. In order to avoid or even minimize these mutual drug-drug interactions, in this work we have focused on the development of less hygroscopic multicomponent solid forms of ETB. The preparation of the new ETB crystal modifications was carried out considering the pKa values of the molecule, which allowed the design of three new salts (namely oxalate, maleate and terephthalate). These salts were obtained from the reaction of ETB with the carboxylic acids: oxalic, maleic and terephthalic. The hygroscopic nature of these salts was evaluated and all of them were found to be hygroscopic, with exception of ETB oxalate. Finally, four novel INH cocrystals, being two polymorphic forms, with aromatic carboxylic acids derivatives were rationally prepared. The design of these crystal forms aimed to explore the diversity of supramolecular synthons formed between INH and molecules containing COOH. The crystal packing analysis of the INH-PABA cocrystals (polymorphs I and II), showed that this is a typical case of orientational polymorphism. Therefore, the scientific contributions of this work show the diversity of the solid forms and define candidates to new anti-tuberculosis API\'s solid formulations. (AU)

FAPESP's process: 15/25694-0 - Obtaining, characterization and evaluation of novel crystalline solid forms of drugs used treatment of tuberculosis
Grantee:Luan Farinelli Diniz
Support Opportunities: Scholarships in Brazil - Master