Advanced search
Start date
Betweenand


Long time circulation micelles containing tamoxifen as nanocarrier system for otimization of the breast cancer therapy

Full text
Author(s):
Marina Claro de Souza
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Juliana Maldonado Marchetti; Marlus Chorilli; Armando da Silva Cunha Junior; Luis Alexandre Pedro de Freitas; Eliana Martins Lima
Advisor: Juliana Maldonado Marchetti
Abstract

Breast cancer is the second main cause of death among women in development countries due to their high malignance grade. The treatment is mainly based on hormonal therapies, once the cells of the majority of mammary tumors express a high number of hormone receptors, responsible for the tumor growth. Tamoxifen is a selective estrogen receptor modulator drug, acting through the antagonism of the activation of the estrogen receptor, reducing thus the tumor growing rate. Despite the treatment with tamoxifen is highly effective, it is related to severe dose-dependent side effects. The central objective of this work was the development of long time circulation micelles containing tamoxifen, prepared with the phospholipid DSPEPEG(n) and TPGS, a vitamin E derivative, by the method of solvent evaporation, for intravenous administration, able to allow a higher accumulation of the drug at the tumoral site due to their nanometric dimensions, leading to a reduction in the dose and consequently in the side effects. The determination of the encapsulation efficiency and the quantification of tamoxifen in the in vitro release profile study from the micellar systems were carried out by HPLC, using methods previously validated. The best results were achieved with the formulations based on DSPE-PEG(2000) and TPGS, which showed mean particle diameter less than 20 nm, low polydispersity index and encapsulation efficiency ranging from 70 to 95%. The transmition electronic microscopy pointed the spherical shape and proved the homogeneity of particle size. The systems were also characterized by infrared spectrophotometry to identify eventual interactions among the components of the formulations. The in vitro release profile study showed that after 168 h, a maximum of about 30% of tamoxifen was released, evidencing that the increase of the TPGS amount in the formulation reduced the amount of tamoxifen released. The low rate of in vitro release drug suggests that the major part of the drug will remain encapsulated during the period of blood permanence, favoring the arrival of the intact nanostructure at the tumoral site. During the evaluation of the plasmatic concentration profile, conducted with Wistar rats, it was not possible to detect neither the tamoxifen nor its main metabolite, suggesting that the intact micelles may have quickly accumulated in the organs. (AU)

FAPESP's process: 09/05670-9 - Long time circulation micelles containing tamoxifen as nanocarrier system for optimization of the breast cancer therapy
Grantee:Marina Claro de Souza
Support Opportunities: Scholarships in Brazil - Doctorate