Advanced search
Start date
Betweenand


Functional detailing of CD99 role in astrocitomas

Full text
Author(s):
Laís Cavalca Cardoso
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Sueli Mieko Oba Shinjo; Suely Kazue Nagahashi Marie; Wellingson Silva Paiva; Miyuki Uno
Advisor: Sueli Mieko Oba Shinjo
Abstract

Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. A combination of standard therapy with other biologically based therapies is necessary to improve the survival of patients with GBM. Many studies have been developed in pursuit of expressed membrane proteins in GBM, which are potential targets for immunotherapy. The transmembrane protein CD99 is highly expressed in different malignant grades of astrocytomas. Although its mechanism of action is not still fully understood, CD99 is involved in cell adhesion and migration in different type of tumors. The CD99 gene encodes two distinct transmembrane proteins, named isoform 1, longer with 32 kDa, and isoform 2, generated by alternative splicing, shorter with 28 kDa. In the present study, we demonstrated predominant expression of isoform 1 in astrocytomas of different malignant grades compared to normal brain, and in the human GBM cell line U87MG. The transcriptome of U87MG cell line transfected with siRNA for CD99 was analyzed in relation to control. A total of 2.670 differentially expressed genes were identified. An enrichment analysis by DAVID Bioinformatics Database revealed the following processes as the most significant: cell-cell adherens junction; cadherin binding involved in cell-cell adhesion and cell-cell adhesion. Functional assays based on these findings (migration, invasion and adhesion) were performed with U87MG cells after knocking down CD99 with two different shRNAs. The CD99 silencing efficiency was 80 and 97%, for shCD99 1 and 2, respectively, confirmed at gene and protein level. The CD99 knockdown reduced migration and invasion for both shRNA, with the highest decrease of migration observed in the higher CD99 knocked down cells. In adhesion assay, shCD99 1 U87MG showed lower adhesive properties than the control, whereas shCD99 2 cells presented opposite results, with higher cell adhesion than control. Probably CD99 knockdown affected in the reduction of cell adhesion in a distinct pattern, suggesting that the result is dependent on CD99 remaining expression level. Additionally, CD99 and phalloidin colocalized at lamellipodia and filopodia, sugesting that CD99 plays an important role to cytoskeleton rearrangement. It has also been demonstrated that CD99 silencing caused reduction of cell proliferation in vitro and decreased tumor in vivo. Immunodeficient mice in which knocked down cells were implanted in the brain had a longer survival than animals that received control cells. The signaling pathway by which CD99 modulates proliferation in GBM still needs to be elucidated. Migration, invasion and proliferation are major characteristics of GBM, which limits the complete surgical tumor resection, and consequently leads to tumor recurrence. Therefore, further analysis of CD99 activating pathways in the context of cell migration, invasion, proliferation and apoptosis is worthwhile to unveil new therapeutic strategies to halt GBM progression (AU)

FAPESP's process: 15/03995-9 - Functional detailing of CD99 role in astrocytomas
Grantee:Laís Cavalca Cardoso
Support Opportunities: Scholarships in Brazil - Doctorate