Advanced search
Start date
Betweenand


Stability of travelling waves for the Schrödingers equation of cubic type with double symmetric delta-interactions wells

Full text
Author(s):
Luis Andres Rosso Ceron
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Defense date:
Examining board members:
Jaime Angulo Pava; Nataliia Goloshchapova; Orlando Francisco Lopes; Fábio Matheus Amorin Natali; José Felipe Linares Ramirez
Advisor: Jaime Angulo Pava
Abstract

This work consists mainly in establishing an analytical way the existence and orbital stability for the standing-wave solutions of \"peakon\"type of the following Schrödinger equation with two points of interaction, determined by two Diracs delta centered at the points x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c + c ]u(x, t) = |u(x, t)| 2 u(x, t), (2) where u : R × R C, Z R and c is the Diracs delta distribution in x = c > 0, namely, for H 1 (R), h c , i = (c). For the standing-wave solutions associated to equation (2), i.e., u(x, t) = e it (x), we show that is possible to determine the profile (x) as follows: between the points c and c, the profile admits at least two smooth positive functions given by the Jacobi elliptic functions of dnoidal and cnoidal type. For c < |x|, the profile coincides with an specific shift of the soliton-profile hiperbolic secant profile (it is well-known in the literature that the hiperbolic secant profile is associated to the equation (2) for the case Z = 0). Indeed, we show for the case Z > 0 that it is possible to determine a periodic dnoidal profile between the points c and c. On the other hand, for the case Z < 0 we establish a periodic cnoidal profile between the points c and c. A crucial question arises in the problem of the existence of a suitable profile is the one related to the location of the interaction point c > 0. This question was crucial to the achievement of our stability/instability result. In fact, the choice of location of the interaction point c implies that the second derivative of the porfile is continuous at c. The stability/instability theory of these specific profiles are based on the analityc per- turbation theory and the framework developed by Weinstein and Grillakis&Shatah&Strauss. More precisely, we show that those ones with a dnoidal profile are unstable and those ones with a cnoidal profile are stable. In addition, we study the Cauchy problem in the energy space H 1 (R) for equation (2). For this purpose, it is necessary to study the spectrum of the operator d 2 ±c,Z = 2 Z[ c + c ]. dx This operator can be understood as the family of self-adjoint extension of the symmetric operator ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}. (AU)