Advanced search
Start date
Betweenand


Propriedades homológicas de finitude

Full text
Author(s):
Luís Augusto de Mendonça
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Defense date:
Examining board members:
Dessislava Hristova Kochloukova; Artem Lopatin; Fernando Eduardo Torres Orihuela; Marcelo Muniz Silva Alves; Vitor de Oliveira Ferreira
Advisor: Dessislava Hristova Kochloukova
Abstract

We consider problems in the theories of discrete groups, Lie algebras, and pro-p groups. We present results related mainly to homological finiteness properties of such algebraic structures. First, we discuss Sigma-invariants of wreath products of discrete groups. We give a complete description of the Sigma1-invariant, which is related to the inheritance of the property of being finitely generated by subgroups. We also describe partially the invariant Sigma2, which is related to the inheritance of finite presentability by subgroups. We apply such results in the study of Reidemeister numbers of isomorphisms of certain wreath products. Then we define and study a version of Sidki¿s weak commutativity construction in the category of Lie algebras over a field whose characteristic is not two. Such construction can be seen as a functor that receives a Lie algebra g and returns a certain quotient chi(g) of the free sum of two isomorphic copies of g. We prove some results on the preservation of certain algebraic properties by this functor, and we show that the Schur multiplier of g is a subquotient of chi(g). We show in particular that, for a free Lie algebra g with at least three free generators, chi(g) is finitely presentable but not of type FP3 , and has infinite cohomological dimension. Finally, we also consider a version of the weak commutativity construction in the category of pro-p groups for a fixed prime number p. We show that such construction also preserves several algebraic properties, as occurs in the cases of discrete groups and Lie algebras. To this end, we also study subdirect products of pro-p groups. In particular we prove a version of the (n ? 1) ? n ? (n + 1) Theorem (AU)

FAPESP's process: 15/22064-6 - Homological finiteness properties
Grantee:Luis Augusto de Mendonça
Support Opportunities: Scholarships in Brazil - Doctorate