Advanced search
Start date
Betweenand


Evaluation of inducing factors of epithelial-mesenchymal transition (EMT) in the endothelial cells biology

Full text
Author(s):
Mariana Tomazini Pinto
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Simone Kashima Haddad; Kamilla Swiech Antonietto; Vitor Marcel Faça; Elisa Maria de Sousa Russo; Wilson Araújo da Silva Junior
Advisor: Simone Kashima Haddad
Abstract

Endothelial-mesenchymal transition (EndMT) is a specialized form of epithelialmesenchymal transition (EMT) which is characterized by changes in cell morphology as a fibroblastoid conversion, expression of endothelial markers decreased, expression of mesenchymal markers increased and acquirement of invasive and migratory properties. However, the molecular mechanism associated with this process is not completely elucidated. The aim of this study was to evaluate the EMT-inducing factors in the endothelial cells (ECs) from different sources through the overexpression of the transcription factor SNAIL and through the treatment with TGF-?2, as well as to identify the molecular mechanisms involved in EndMT. For this purpose, primary pulmonary artery EC (HPAEC), primary pooled umbilical vein EC (PHUVEC), primary aortic EC (PAEC), primary coronary artery EC (CAEC) lineages were induced under three distinct conditions: I) TGF-?2; II) ectopic expression of SNAIL; III) ectopic expression of SNAIL associated with TGF-?2 (SNAIL+TGF- ?2). After the EndMT induction, the expression of the genes associated with EndMT was analyzed by Real time PCR (qPCR) and CAECs showed the most prominent alterations on their gene expression profile which showed that SNAIL+TGF-?2 group presented an increase of mesenchymal markers FN1, SM22, CNN1, and CD90 expression. CAEC-SNAIL+TGF-?2 group also showed a decrease of endothelial markers CD31 and CDH5 by western blot. Then, microarray was performed in CAECs after EndMT induction and hierarchical clustering analysis showed that the ectopic expression of SNAIL and SNAIL+TGF-?2 clustered separately from the other conditions. Microarray data resulted in a network which presented an upregulation of the mesenchymal genes such as COL1A1, COL1A2, FN1, and CNN1 in the CAEC-SNAIL+TGF-?2 compared to control cells. We analyzed the canonical pathways related to the differentially regulated genes between CAEC- SNAIL+TGF-?2 and control cells and the regulation of EMT pathways was the most represented, which includes Notch and Wnt signaling pathway. In the microarray data, NOTCH3 and WNT5B were overexpressed in CAEC-SNAIL+TGF-?2 compared to control. It is known that Wnt5b might inhibit the ?- catenin pathway. Therefore, NOTCH3, WNT5B and ?-CATENIN gene expression were analyzed by qPCR. NOTCH3 and WNT5B gene expression confirmed the microarray data and no statistical difference were observed in ?-CATENIN expression. Moreover, all the CAECs conditions were subjected to scratch migration assay and the formation of capillary-like structures assay. CAEC-SNAIL+TGF-?2 had a significant migration compared to other conditions and the three EndMT inductions (TGF-?2, SNAIL, and SNAIL+TGF-?2) were not able to form capillary-like structures. Some microRNAs were selected and evaluated by qPCR. The miR-let7a was significantly expressed in the SNAIL and SNAIL+TGF-?2 groups. The assay of gain or loss of function of miR-let7a was realized; however, the repression or induction of miR-let7a did not change the EndMT. These results suggest that endothelial cells from distinct anatomical sources have different responses when stimulated to undergo the EndMT. Moreover, the association between SNAIL+TGF-?2 is a potent inductor for EndMT and this induction can be mediated by Notch and non-canonical Wnt signaling pathway activation. (AU)

FAPESP's process: 11/21740-7 - Evaluation of transcription factors that induce ephitelial-mesenchymal transition (EMT) in endothelial cell biology
Grantee:Mariana Tomazini Pinto
Support Opportunities: Scholarships in Brazil - Doctorate