Advanced search
Start date
Betweenand


The influence of L-glutamine on imunumodulatory aspects of bone marrow mesenchymal stem cells under protein-energy malnutrition

Full text
Author(s):
Guilherme Galvão dos Santos
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Ricardo Ambrosio Fock; Fernando Luiz Affonso Fonseca; Edgar Julian Paredes Gamero; Fabio Bessa Lima; Heraldo Possolo de Souza
Advisor: Ricardo Ambrosio Fock
Abstract

Protein-energy malnutrition (PEM) alters hemopoiesis and, therefore, the generation of immune cells, and compromises the immune system. In this way, malnourished individuals are more susceptible to infections. Mesenchymal stem cells (MSCs) have immunomodulatory properties and are important in the formation of bone marrow stroma that supports hemopoiesis. Since L-glutamine (GLUT) is a conditionally essential amino acid, which is most consumed by MSCs, and present immunomodulatory capacity, this work investigated whether GLUT would have an effect on immunomodulatory aspects of MSCs in a PEM experimental model. For this purpose, BALB/c mice were used, which received isocaloric normoproteic or hypoproteic diets, containing respectively, 12% and 2% of protein for a period of 5 weeks. After isolation and characterization of MSCs from control (MSCct) and malnourished (MSCmaln) groups, these cells were cultured with 0, 0.6, 2 and GLUT 10mM in order to determine the influence of this amino acid on the expression of transcription factors and cytokine production by MSCct and MSCmaln. Besides that, the effect of MSCct and MSCmaln culture supernatants on proliferation and cytokine production by macrophages and splenic lymphocytes was evaluated. Malnourished animals presented anemia, leucopenia, marrow hypoplasia and decreased concentration of serum proteins, albumin and prealbumin. PEM did not change morphology and phenotype of MSCs or altered the expression of cell cycle regulatory proteins. On the other hand, the expression of NFkB and STAT-3 and the production of IL-1β, IL-6, IL-10 and TGF-β by MSCs were modified by PEM and varied according to the tested GLUT concentrations. An increase in GLUT concentration decreased NFkB expression and induced STAT-3 expression by MSCs obtained from both groups. Regarding the production of cytokines by these cells, an increase in GLUT concentration resulted in decreased IL-1β and IL-6 levels and increased IL- 10 and TGF-β levels. Changes in the concentration of this aminoacid did not alter IL- 17 or IFN-γ production by MSCct and MSCmaln. Furthermore, the concentration of GLUT changed, in direct proportion, the proliferation of MSCs. The conditioned media MSCct and MSCmaln decreased the proliferation of macrophages and splenic lymphocytes stimulated with LPS, induced an increase in the production of the antiinflammatory cytokine IL-10 by both cell types, and decreased the production of proinflammatory cytokines IL-12 and TNF-α by macrophages and IL-17 by lymphocytes. Therefore, it can be concluded that GLUT has an effect on the proliferation of MSCs and it has the capacity to immunomodulate these cells. (AU)

FAPESP's process: 11/21153-4 - The influence of L-glutamine on immunomodulatory aspects of bone marrow mesenchymal stem cells in a malnourishment state
Grantee:Guilherme Galvão dos Santos
Support Opportunities: Scholarships in Brazil - Doctorate