Advanced search
Start date
Betweenand


Vibrational Spectroscopy and Themodynamic Properties of Ionic Liquids under High Pressure

Full text
Author(s):
Tatiana Casselli Penna
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Mauro Carlos Costa Ribeiro; Ataualpa Albert Carmo Braga; Thiago Carita Correra; Norberto Sanches Gonçalves; Munir Salomão Skaf
Advisor: Mauro Carlos Costa Ribeiro
Abstract

The aim of this thesis is the quantitative treatment of the vibrational frequency shifts of ionic liquids under pressure. The study of the ionic liquids 1-butyl-3-methylimidazolium, 1-hexyl-3- methylimidazolium and 1-octyl-3-methylimidazolium tetrafluoroborate under high pressure were made under a simultaneous approach of simulation, spectroscopy and liquid theories. The equations of state of such systems are obtained with data in the MPa range and are necessary in the analysis of spectroscopic data obtained in the GPa range. It becomes necessary to obtain the density data in a larger pressure range, and to develop a methodology that selects through equations of state proposed in literature that extrapolate very differently in the GPa range. Two proposals to validate such equations of state, and obtain high pressure density data, are made. The first one consists in comparing the extrapolations with classic Molecular Dynamics results. This becomes a problem because the force field is not parametrized for this region. However, a good agreement between the simulation curve and the equation of Domanska are obtained which implicates that this equation could be considered better to describe this system under pressure. This finding is in agreement with the second strategy, in which the different equations of state are used to analyze quantitatively the frequency shift data of the totally symmetric stretching mode of the tetrafluoroborate anion using the Schweizer and Chandler model. The equation of Domanska provides a better linear fit of the attractive frequency shift component, as predicted by the model of Schweizer and Chandler. Moreover, the frequency shift data for the three systems colapse in a master curve when they are plotted versus the reduced density, and the overall fit to the model is the best through all equations of state tested. Ab initio molecular dynamics simulations of the 1- butyl-3-methylimidazolium tetrafluoroborate under pressure were made and show that this methodology is accurate to describe quantitatively describe the experimental frequency shift, but the Raman spectrum presents an intense band which is not observed experimentally. (AU)

FAPESP's process: 13/07741-6 - Vibrational Spectroscopy and Thermodynamic Properties of Ionic Liquids under High Pressure
Grantee:Tatiana Casselli Penna
Support Opportunities: Scholarships in Brazil - Doctorate