Advanced search
Start date
Betweenand


Synthesis and characterization of ZnO nanostructures for application as gas sensors

Full text
Author(s):
Ariadne Cristina Catto
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Valmor Roberto Mastelaro; Santiago José Alejandro Figueroa; Waldir Avansi Junior; Marcelo Ornaghi Orlandi; Antonio Ricardo Zanatta
Advisor: Valmor Roberto Mastelaro
Abstract

The development of new materials to be applied as gas resistive sensors has become increasingly important regarding environmental monitoring, industrial emission control and medical applications. Pure or doped ZnO nanostructured compounds that exhibit different morphologies have been identified as promising candidates for the detection of different types of toxic gases due to their electronic properties and high surface/volume ratio, which facilitates the adsorption of gaseous species on their surface. Studies have shown the performance of resistive sensors can be improved by the doping or presence of defects in the network or at the surface of the sensor material. The present doctoral thesis addresses the evaluation of ZnO and Zn1-xCoxO nanostructured films obtained by the polymeric precursor method, RF sputtering deposition and hydrothermal treatment and their application as O3, NO2 and CO gas sensors. Their long-range order structure investigated by the X-ray diffraction technique showed the addition of cobalt decreases the intensity of diffraction peaks. Measurements of X-ray absorption spectra at Co K-edge indicated Co atoms in the samples obtained by the RF sputtering technique and polymeric precursor method predominantly assume the 2+ and 3+ oxidation state. Measurements of electrical resistance were used in the evaluation of ZnO and Zn1-xCoxO nanostructured films sensing properties such as sensitivity, selectivity, response and recovery times under different concentrations of O3, CO and NO2 gases. The electrical resistance of the films exposed to those gases showed the three methodologies of synthesis effectively obtained samples to be applied as gas sensors. However, the sample obtained by the RF-sputtering deposition technique exhibited the best detection properties towards ozone gas and a forty-time higher response value, attributed to greater roughness and microstructural features. Zn1-xCoxO samples obtained by the polymeric precursor method exhibited higher sensitivity and a lower working temperature in relation to ozone gas. Such characteristics were attributed to a better catalytic activity promoted by the addition of Co ions and the presence of defects on the surface of the material, which favors the adsorption of oxygen molecules on the sample surface. (AU)

FAPESP's process: 12/15170-6 - Synthesis and characterization of ZnO thin and thick films : application as gas sensors
Grantee:Ariadne Cristina Catto
Support Opportunities: Scholarships in Brazil - Doctorate