Advanced search
Start date
Betweenand


Co-encapsulation of curcumin and vitamin D3 in multilamellar liposomes

Full text
Author(s):
Matheus Andrade Chaves
Total Authors: 1
Document type: Master's Dissertation
Press: Pirassununga.
Institution: Universidade de São Paulo (USP). Faculdade de Zootecnica e Engenharia de Alimentos (FZE/BT)
Defense date:
Examining board members:
Samantha Cristina de Pinho; Elaine Christine de Magalhães Cabral; Izabel Cristina Freitas Moraes; Lucimara Gaziola de la Torre
Advisor: Samantha Cristina de Pinho
Abstract

Currently, the demand for food with functional appeal has become increasingly recurrent among the consumers due to a growing search for healthier living habits. Therefore, the development of techniques that allow a more effective addition of functional ingredients in food matrices becomes a necessity. These techniques should mainly enable to (i) incorporate a sustained release mechanisms into the formulation; (ii) increase the bioaccessibility and bioavailability to these ingredients, from the control of the food microstructure. This project aims to contemplate these two premises by proposing the encapsulation of two hydrophobic bioactives, curcumin and vitamin D3, known for their antioxidant and nutraceutical properties, in liposomes - lipid carriers - stabilizing them with different hydrocolloids - xanthan gum, guar gum and inulin. Liposomes were produced by proliposomes hydration and their physicochemical properties were characterized during 42 days of storage, including analyzes of hydrodynamic average diameter, zeta potential, instrumental colorimetry and quantification of encapsulated bioactives. Analyzes that allowed the microstructure characterization of the produced dispersions were also performed, including: differential scanning calorimetry (DSC), small-angle X-ray scattering and rheological tests. The SAXS analysis showed that liposomes produced in the presence of curcumin were more stable when compared to the empty ones and that there was no change in the lipid bilayer of the vesicles after the addition of vitamin D3, even when a high concentration was incorporated into the system (80,000 IU). Finally, it was concluded that the coencapsulation was possible in multilamellar liposomes stabilized with guar and xanthan gums, a result that can be evidenced by the high content of bioactives retained throughout the storage time. (AU)

FAPESP's process: 15/03362-6 - Coencapsulation of curcumin and vitamin D3 in multilamellar liposomes
Grantee:Matheus Andrade Chaves
Support Opportunities: Scholarships in Brazil - Master