Advanced search
Start date
Betweenand


Cyanobacterial diversity from São Paulo State mangroves

Full text
Author(s):
Janaina Rigonato
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Marli de Fatima Fiore; Fernando Dini Andreote; Luis Henrique Zanini Branco; Suzan Pantaroto de Vasconcellos; Claudia Barros Monteiro Vitorello
Advisor: Marli de Fatima Fiore
Abstract

Microorganisms play important role in the recycling of elements in mangrove ecosystems, since as primary producers they can control chemical reactions. The particular cyanobacteria group act promoting the input of carbon and nitrogen through their ability to realize oxygenic photosynthesis and fixing atmospheric nitrogen. In Brazil, the mangrove forests occupy an area of approximately 25.000 km2, and in the total area of São Paulo State, 240 km2 are covered by this ecosystem. The aim of this work was to evaluate the cyanobacterial diversity that colonize Avicennia schaueriana, Rhizophora mangle and Laguncularia racemosa leaves from Cardoso Island mangrove, a pristine site, as well as to assess and compare the soil cyanobacterial population from both Cardoso Island and Bertioga mangroves, this last one contaminated with crude oil. For this purpose, the techniques of DGGE and clone library of 16S rRNA gene, ARISA, and TRFLP of nifH gene were used. The phyllosphere results evidenced a subtle difference of the genus of tree on the colonization of cyanobacteria, however a strong effect from tree’s location within the mangrove was observed. The tree leaves from the middle of mangrove area showed a greater diversity of cyanobacterial genera. In geral, 19 genera and several uncultivated cyanobacteria were identified. A predominance of sequences with high similarities to representatives of the order Nostocales and Oscillatoriales were observed. Sequences with similarities to the genus Symphyonemopsis (order Stigonematales) were recovered in higher quantity. Regarding to the soil diversity, DGGE and ARISA results showed that the cyanobacterial population is distinct among both mangroves studied, however the electrophoretic profiles from samples collected near to the sea grouped together, suggesting that colonization is influenced by flood conditions. The most different profile was obtained in the site near to the forest in Bertioga mangrove, location more affected by the oil contamination. Clone libraries clearly showed 16S rRNA sequences differences among sites sampled. A total of 99 OTUs were obtained, with 61 singletons. In the site near to the sea the Procholorococcus and Synechococcus genera were dominant in both mangroves. The majority of 16S rRNA sequences found in the other sites were related to uncultured cyanobacteria. Alpha diversity suggested that the site with lowest diversity was middle of the Bertioga mangrove, and the highest was Bertioga near to the forest, the remainder sites had similar values. The highest richness indices were found in the sites near to the forest, while lower values were observed in the sites near to the sea. The majority of the 16S rRNA sequences obtained from the middle of the mangrove and near to the forest in Bertioga showed identities lower than 90% with that available in the GenBank. These sequences may represent novel cyanobacterial taxa or known cyanobacteria not yet sequenced. The TRFLP of nifH gene indicated that the sites near to the sea and middle of the Cardoso Island mangrove harbored similar diazotrophic populations, while in Bertioga these sites presented differences in TRFLP profiles. The greatest differences were in the sites near to the forest in both mangroves. (AU)

FAPESP's process: 07/08354-5 - Assessment of the genetic diversity of cyanobacteria from São Paulo State mangroves using DGGE and library of 16S rDNA gene
Grantee:Janaina Rigonato
Support Opportunities: Scholarships in Brazil - Doctorate