Advanced search
Start date
Betweenand


The dependence of temperature, the bulk solution pH and other parameters in the electro-oxidation of small organic molecules

Full text
Author(s):
Fabian Wolfgang Hartl
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Hamilton Brandão Varela de Albuquerque; Fabio Henrique Barros de Lima; Osmando Ferreira Lopes
Advisor: Hamilton Brandão Varela de Albuquerque
Abstract

The electro-oxidation of formic acid remained under discussion for a long time in literature, where especially the active intermediate in the direct oxidation pathway was discussed controversially. Recently some groups reported new insight by the analysis of the formic acid oxidation in dependence on the bulk solution pH. Yet, the majority of the studies are carried out under conventional conditions, which are close to the thermodynamic equilibrium. On the other hand the system can be driven far from equilibrium by controlling the current, conditions where the oxidation of small organic molecules over platinum may undergo pattern formation and show oscillatory behaviour. Due to the drastically different conditions one may get a better understanding of the complex reaction network, which remains hidden in conventional experiments. Thus, the pH dependence of formic acid oxidation was revisited under steady state voltammetry and extended to a wide temperature range and oscillating conditions. Here insight could be given in various points: a) the pH dependence, as reported earlier, could be reproduced and strongly suggests formate rather than formic acid as most active species; b) in acidic media a third pathway beside direct and indirect ones may be active; c) newly found oscillation patterns in alkaline media revealed the site blocking character of adsorbed water species as possible origin for pattern formation; and d) generally, all surface processes, which are directly or indirectly involved, can be very susceptible to small variations in the bulk solution pH and temperature, that their activity can change significantly and the system emerge different results under similar conditions. Further effort was done to extend the study to methanol oxidation, which allowed a differentiated view on the adsorption of carbonaceous and oxygenated species, which may have mostly inhibiting character. Yet, as the results showed under some conditions, an effective interaction of both species via Langmuir-Hinshelwood mechansim can be realized, that the direct oxidation pathway can undergo higher activity and oscillation patterns may cease. It could also be found, that the produced formic acid as partially oxidized by-product may have a crucial role in the reaction network of the electro-oxidation of methanol. At last it could be found, that not just adjustments like alloying of platinum with gold can enhance the catalyst performance by electronic and ligand effects, but also modifications in the solution content, such as simultaneous oxidation of formic acid and methanol allow an increasing performance. In both ways the formation of CO can be suppressed, that the most active process, namely the direct oxidation of formic acid is more pronounced. (AU)

FAPESP's process: 14/08030-9 - Electrocatalysis under oscillatory regime: in situ IR spectroscopy in ATR-SEIRAS configuration
Grantee:Fabian Hartl
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)