Advanced search
Start date
Betweenand


Mechanism of the aerobic oxidation of acetoacetate and 2- methylacetoacetate catalyzed by Mb: implications for ketogenic disorders

Full text
Author(s):
Douglas Ganini da Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Etelvino Jose Henriques Bechara; Roger Frigerio Castilho; Ana Maria da Costa Ferreira; Leticia Labriola; Daniel Rettori
Advisor: Etelvino Jose Henriques Bechara
Abstract

Acetoacetate (AA) and 2-methylacetoacetate (MAA) are β-ketoacids accumulated in several metabolic disorders such as diabetes and isoleucinemia, respectively. Here we examine the mechanism of AA and MAA aerobic oxidation initiated by the reactive enzyme intermediates formed by the reaction of muscle horse myoglobin (Mb) with H2O2. A chemiluminescent route involving a dioxetane intermediate whose thermolysis yields triplet α-dicarbonyl species (methylglyoxal and diacetyl) is envisaged. Accordingly, the ultraweak light emission that accompanies the reaction increases linearly by raising the concentration of both Mb (10-500 µM) and AA (10- 100 mM). Oxygen uptake studies revealed that MAA is, expectedly, almost one order of magnitude more reactive than AA. EPR spin-trapping studies with MNP detected spin adducts from MAA attributable to an α-carbon-centered radical (aN = 1.55 mT) and to an acetyl radical (aN = 0.83 mT). As the acetyl radical signal is totally suppressed by sorbate, a well-known efficient triplet species quencher, the dioxetane hypothesis seems to be reliable. The α-cleavage of the carbonyl-carbonyl bond of a putative excited triplet diacetyl product would, in fact, leads to an acetyl radical. Furthermore, using AA as substrate for Mb/H2O2, an EPR signal assignable to a MNP-AA• adduct (aN = 1.46 mT and aH = 0.34 mT) was observed and confirmed by isotope effect. Oxygen consumption and α-dicarbonyl yield were also dependent on AA or MAA concentrations (1-50 mM) as well as on the concentration of peroxide added to the Mb-containing reaction mixtures: H2O2 (up to 1:10 when measuring oxygen uptake and up to 1:25 when measuring the α-dicarbonyl yield) and t-butOOH (up to 1:200). The pH profiles (5.8-7.8) of oxygen consumption and α-dicarbonyl yield show higher reaction rates at lower pHs, indicative of a ferrylMb intermediate. Evaluating Mb lesion, both β-ketoacids reduced disorganization of the secondary and tertiary protein structure elicited by H2O2. Therefore, Mb primary structure was more preserved, and MAA was more protective than AA. Moreover using the later compound, it was shown that Mb acetylation is dose-dependent. Acetoacetate increased the rate of the hemeprotein bleaching, probably due to the attack of triplet products generated in the system. Plantaris and soleous rat muscles exposed to damaging concentrations of glucose oxidase (GOX, generates H2O2 in flux), was cytoprotected by AAE and MAAE. Intracellular diacetyl was detected in muscle samples exposed to MAAE and GOX. The α-dicarbonyl concentration is clearly related to the Mb abundance in the muscle types. In summary, Mb treated with peroxides reacts with β-ketoacid metabolites (AA and MAA), yielding carbon-centered radicals and highly reactive α-dicarbonyl products in the triplet state. Experiments carried out ex vivo with muscle tissue showed that this reaction possibly occurs in vivo. A new route for generation and accumulation of carbonyl reactive species and adducts is here proposed to occur in unbalanced metabolic situations, such as is the case of ketogenic disorders. (AU)