Advanced search
Start date
Betweenand


Auxin signaling pathways and their interactions with the sugarcane circadian clock

Full text
Author(s):
Gustavo Antonio Teixeira Chaves
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Carlos Takeshi Hotta; Celso Eduardo Benedetti; Eny Iochevet Segal Floh; Aline Maria da Silva; Flavia Vischi Winck
Advisor: Carlos Takeshi Hotta
Abstract

The circadian clock is a regulatory network with great relevance to fitness of plants. This network creates biological rhythms, influencing plants metabolism and their interaction with the environment. The clock is composed of interlocking feedback transcriptional and post-transcriptional pathways. In the presente study, we investigated the interconnection between circadian clock and signaling through auxins, a group of phytohormones with great impact to plant biology. Using RT-qPCR, it was established a protocol to measure transcriptional responses after synthetic auxin 1-naphtalenacetic acid (NAA) treatment. The biological material used was leaves of sugarcane plantlets generated by direct organogenesis. After 1h treatment with 80 µM NAA, we observed obvious transcriptional responses in sugarcane plantlets. It was also possible to detect alterations of transcriptional responses according to the moment when the stimulus was offered. This temporal control is called gating and is of great relevance to plant circadian clocks. We then performed transcriptomic analysis, using oligoarrays, to get a deeper understanding of the results obtained. Indeed, it was verified that auxin stimulus is connected to biotic stress transcriptional responses and that these responses are clock-controlled. Transcripts coding for proteins like chitinases and thaumatins, which are related to biotic stress responses, were differentially expressed after auxin treatment. Also, the response of most genes was daytime-dependent. We conclude that sugarcane circadian clock, through auxin signaling, might exert control under biotic stressresponses in sugarcane. The data obtained are novelty and may contribute to increase sugarcane productivity and/or to development of new biotechnological tools dedicated to this cultivar. (AU)

FAPESP's process: 13/08574-6 - Auxin signaling pathways and their interactions with the circadian clock in sugarcane
Grantee:Gustavo Antônio Teixeira Chaves
Support Opportunities: Scholarships in Brazil - Doctorate