Development of flexible solvent sensors from natural rubber and EPDM rubber nanoco...
Mechanical and tribological properties of nanocomposites based on ultra high molec...
![]() | |
Author(s): |
Eduardo Ariel Ponzio
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 2006-09-15 |
Examining board members: |
Roberto Manuel Torresi;
José Maurício Rosolen;
Paulo Teng An Sumodjo;
Marcia Laudelina Arruda Temperini;
Aldo José Gorgatti Zarbin
|
Advisor: | Roberto Manuel Torresi |
Abstract | |
In this work, new nanostructures formed from a mixture of MnO2 and conducting polymer blends (CPB), and new materials with specific morphology (nanofibers), constituted of V2O5 and V2O5/Pani have been investigated for application in energy storage devices, specifically, as cathode material for secondary lithium batteries and supercapacitors. Different nanostructures were prepared by reverse micelle method. Colloidal assemblies are used to control the size and the shape of the particles. The growth of the obtained particles was controlled by two condition: (i) time of the synthesis and (ii) size of the polar core. The characterization of CPB (Pani/PMMA and Ppy/PMMA) shown that this blends give an opportunity for the design of materials with improved properties, (stability, charge propagation dynamics) affording an ultimate degree of dispersion for the nanoparticles (MnO2). We also describe the preparation of electrodes with hybrid films formed by MnO2 dispersed into CPB. The resulting modified electrodes have been used for the fabrication of a supercapacitor and cathodes for lithium batteries. On the other hand, we explore the relationship between the nanoscale morphology and electrochemical performance of V2O5 and V2O5/Pani nanofibers. Both type of sample were examined by several techniques to characterize their structure and morphology. It was found that V2O5/Pani shows improved cycling behavior compared to the V2O5 one. The polymer looks to improve capacity of the nanohybrid electrodes due to the homogeneous distribution of the induced stress during cycling. The rate capabilities of the nanostructured electrodes were compared with the obtained value for thin-film electrodes containing the same type of the electrode material. Spectroscopy electrochemical impedance and cyclic voltammetry experiments have shown that the nanostructured electrode affords higher solid state kinetic and capacities than thin film electrodes. Therefore, the general notion behind these efforts is to combine the attractive properties of each material (conducting polymers and metal transition oxides)while taking advantage of synergistic effects that might mitigate against unattractive features observed for the individual materials. (AU) |