Advanced search
Start date
Betweenand


Interaction of Hg (II) with heterogeneous naturally occurring ligands studied by anodic stripping voltammetry automated by sequential injection analysis

Full text
Author(s):
Fernando Henrique do Nascimento
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Jorge Cesar Masini; Gilberto Abate; Thiago Regis Longo Cesar da Paixão
Advisor: Jorge Cesar Masini
Abstract

Among the chemical species responsible for metal contamination of the aquatic environment, mercury and other mercury compounds have received special attention due to its high toxicity. The naturally occurring ligands form complexes with Hg2+ ions, influencing their bioavailability. Through these ligands, there is emphasis on heterogeneous naturally occurring ligands (HNOL), such as humic substances and clay minerals because of its high adsorption capacity/complexation with metal ions. Between the techniques for the determination of Hg(II), anodic stripping voltammetry stands out because of characteristics that make it more suitable for studies involving interactions between HNOL and Hg(II), such as high sensitivity and minimal sample handling. A strategy to avoid problems caused by the passivation of the electrode surface by adsorption of organic matter and to increase robustness of the technique is the mechanization of the analysis system by sequential injection analysis (SIA). The present study aimed at developing a SIA system with voltammetric detection, specifically square wave voltammetry (SIA-SWV), to determine Hg(II) in adsorption studies with humic acid, automating the medium exchange procedures avoiding the contact of the electrode with the atmosphere, overcoming problems of Hg0 reoxidation by atmospheric O2 and signal distortion caused by saturation of adsorption sites present in the diffusion layer in the stripping step, making voltammetric measurements more reproducible and rapid. The proposed SIA-SWV system has the potential to carry out measurements of the labile and free fraction of Hg2+ in natural waters, being also suitable for the development of adsorption studies involving the presence of organic ligands. The limit of detection (0.02 µmol L-1) attends the limits allowed by CONAMA (0.05 µmol L-1) for the discharge of effluents. This shows the potential of the SIA-SWV system to perform determinations of Hg2+ and as an auxiliary technique for monitoring the concentration of the species in wastewater before release into water bodies. Among the studied LHONs, the humic acid showed the highest adsorption capacity for Hg (II) (Kf = 295/304 ± 1 µmol1-1/n g-1 L1/n and Qmax = 537 ± 30 µg mol-1). The results suggest that in waters rich in dissolved organic matter (DOM) carboxylic groups in humic acids are among the major regulators of the availability and mobility of Hg(II). It is also shows that clay particles influences the adsorption capacity (under conditions of pH 6.0 and ionic strength) of the humic substances in the adsorption of Hg(II). The process of desorption of Hg (II) in HCl 0.06 mol L-1 was most favored for the condition in the ternary system, with desorption percentages ranging from 74 to 100%. It was evidenced that the decrease of the pH influences the adsorption/complexation because of the competition between this process and protonation of the adsorption sites present in the humic acid. The increase in ionic strength increases adsorption/complexation by Hg (II), suggesting the formation of covalent bonds is governing this process of interaction between Hg(II) and humic acid. (AU)

FAPESP's process: 10/04372-1 - Study of interactions of Hg(II) with heterogeneous ligands of natural occurrence by voltammetric techniques
Grantee:Fernando Henrique Do Nascimento
Support Opportunities: Scholarships in Brazil - Master