Advanced search
Start date

Autonomous system for mission control and flight safety in UAVs

Full text
Jesimar da Silva Arantes
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Cláudio Fabiano Motta Toledo; Luiz Henrique Andrade Correia; Alexandre Cláudio Botazzo Delbem; Ricardo Menotti
Advisor: Cláudio Fabiano Motta Toledo

This document aims to present the thesis developed in the doctoral program in Computer Science and Computational Mathematics at ICMC/USP. This thesis addresses the development of low- cost autonomous systems for mission supervision and flight safety in Unmanned Aerial Vehicles (UAVs). The mission supervision is ensured through the implementation of a Mission Oriented Sensor Array (MOSA) system, which is responsible for the proper fulfillment of the mission. The flight safety is guaranteed by the In-Flight Awareness (IFA) system, which aims to monitor the aircraft operation. The mission and safety issues are complex, and the MOSA and IFA systems were idealized and developed independently, based on the idea of separation of concerns. The development of these systems was based on two reference models: MOSA and IFA, proposed in the literature. In previous works of the literature, some MOSA and IFA systems have been proposed for specific mission situations. In another approach, this thesis proposes a single MOSA and IFA system capable of adapting to a distinct set of missions. All the communication architecture that integrates the MOSA and IFA systems were developed in this work. However, only these two systems are not sufficient to carry out the mission safely; a system that can communicate with the AutoPilot (AP) of the UAV its also needed. In this way, a system that is capable of sending commands and requests to the AP was implemented in this work. Through these three systems, autonomous missions with a diversion of obstacles could be carried out without human intervention, even in critical situations to the flight. Ensuring the safety and mission aspects can become conflicting during the flight because in hazards situations the mission must be aborted. Different strategies for path planning and path replanning, based on evolutionary computation and heuristics, were developed and integrated into the MOSA and IFA systems. The systems proposed here were validated in four stages: (i) experiments with FlightGear flight simulator; (ii) simulations using Software-In-The-Loop (SITL); (iii) simulations using Hardware- In-The-Loop (HITL); (iv) real flights. In the last stage, the systems were embedded in two models of UAVs, developed by the research group. During the experiment were evaluated some models of autopilots (APM and Pixhawk), companion computers (Raspberry Pi 3, Intel Edison and BeagleBone Black), mission planners and emergency route planners. In all, three route planners and eight replanners are supported by the autonomous platform. The developed autonomous system allows changing missions with different hardware and software characteristics in an easy and transparent way, being, therefore, an architecture with Plug and play characteristics. (AU)

FAPESP's process: 15/23182-2 - Autonomous system for mission control and flight safety in UAVs
Grantee:Jesimar da Silva Arantes
Support Opportunities: Scholarships in Brazil - Doctorate