Advanced search
Start date
Betweenand


Cancer cachexia: potential therapeutic effects of aerobic exercise training on skeletal muscle

Full text
Author(s):
Christiano Robles Rodrigues Alves
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola de Educação Física e Esportes (EEFE/BT)
Defense date:
Examining board members:
Patricia Chakur Brum; Gilberto de Castro Junior; Roger Chammas; Carlos Eduardo Negrão; Carlos Ugrinowitsch
Advisor: Patricia Chakur Brum
Abstract

Cancer cachexia is a multifactorial syndrome characterized by skeletal muscle wasting, resulting in a functional impairment. This syndrome is associated with exercise intolerance and early mortality in cancer patients. Pharmacological treatment is still limited, perhaps due to the multifactorial characteristics of this syndrome. In this sense, evidences indicate that a multimodal approach is necessary to counteract cachexia, including non-pharmacological strategies, such as exercise training. However, little is known regarding the mechanisms underlying the potential therapeutic effects of exercise training on cancer cachexia. Therefore, the current study aimed to evaluate the effects of aerobic exercise training on metabolic impairment and skeletal muscle wasting in cancer cachexia experimental models. Additionally, we aimed to explore mechanisms involving the potential therapeutic effects of exercise training. For doing that, we first standardized a cancer cachexia rat model by injecting Walker 256 tumor cells in the bone marrow. This model displayed consistent tumor growth, skeletal muscle wasting and good reproducibility. By using this experimental model, we assessed the effects of two different aerobic exercise training protocols: moderate intensity training (MIT) and high-intensity interval training (HIIT). Even though tumor growth was not affected, both MIT and HIIT improved aerobic capacity and survival. Moreover, HIIT reestablished the skeletal muscle function and normalized oxidative stress markers. To further explore mechanisms underlying such benefits, we applied a proteomics screening in the skeletal muscle of 1) control rats, 2) rats with cancer cachexia and 3) rats with cancer cachexia submitted to HIIT. In this analysis, we identified COP9 signalosome complex subunit 2/Thyroid receptor interacting protein 15 (COPS2/TRIP15) as one of the most regulated proteins, showing lower content in the skeletal muscle during cancer cachexia progression, which was normalized after HIIT. Similar results were observed for B16F10 model in mice submitted or not to HIIT. We further assessed whether COPS2/TRIP15 could present a therapeutic role in the skeletal muscle. For doing that, we overexpressed this protein in primary mouse myotubes using an adenovirus. Cell culture media taken from tumor cells were incubated in the myotubes to induce metabolism impairment and loss of protein content. However, COPS2/TRIP15 overexpression was not sufficient to mitigate deleterious effects induced by the conditioned media. In summary, the current PhD thesis demonstrated that HIIT mitigated exercise intolerance and normalized COPS2/TRIP15 protein content in the skeletal muscle of different cancer cachexia experimental models. These pre-clinical data open perspectives to evaluate HIIT effects in cancer cachexia patients. New experiments are necessary to explore the role of COPS2/TRIP15 during cancer cachexia progression (AU)

FAPESP's process: 14/03016-8 - Cancer cachexia: effects of aerobic physical training on skeletal muscle in animal model
Grantee:Christiano Robles Rodrigues Alves
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)