Advanced search
Start date
Betweenand


The Sunyaev-Zeldovich effect: theory and cosmological applications

Full text
Author(s):
Rodrigo Fernandes Lira de Holanda
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto Astronômico e Geofísico (IAG/SBD)
Defense date:
Examining board members:
José Ademir Sales de Lima; Jose Carlos Neves de Araujo; Jacques Raymond Daniel Lepine; Elisabete Maria de Gouveia Dal Pino; Marcelo Byrro Ribeiro
Advisor: José Ademir Sales de Lima
Abstract

The so-called Sunyaev-Zeldovich effect (SZE) is one of the most promising techniques for cosmological investigations involving galaxy clusters and the cosmic background radiation (CMB). Such an effect is a modification of the Planckian spectrum due to the interaction between the CMB photons and the hot electrons filling the intracluster medium. In this PhD thesis, we constrain some cosmological parameters and investigate the structure of galaxy clusters based on some samples for which the cluster are endowed with simultaneous measurements of SZE and X-ray surface brightness. Two different samples of galaxy clusters are considered, namely: the 25 data compiled by De Fillippis et al. (2005), and the 38 data sample of Bonamente et al. (2006), based on the non-isothermal spherically symmetric model. Initially, we constrain the value of the Hubble parameter, $ H_0 $, by taking into account the different assumptions underlying the galaxy cluster samples in the context of a flat $\\Lambda$CDM model, as well as, for more general cosmologies like the flat XCDM model and $\\Lambda $CDM with curvature. The results depend on the model assumptions and samples. It is also found that a joint analysis involving ESZ/Raios-X of clusters, the baryon acoustic oscillations (BAO) and shift parameter, constitutes an interesting technique for constraining the Hubble parameter and that its value is weekly dependent on the curvature, as well as on the equation of state parameter of the dark energy. By analysing the different samples, we conclude that the elliptical description of the De Filippis et al. (2005) provides the best quality description in comparison with measurements that are independent from galaxy clusters physics. Furthermore, by using galaxy cluster data (SZE/X-ray) and adopting a purely kinematical description for the universal expansion, we obtain that the decelerating parameter is negative with 92 \\% and 72 \\% of the probability by using the Bonamente et al. (2006) and De Filippis et al. (2005) samples, respectively. By simulating future data set, the ability of the ongoing SZE observations to obtain tighter constraints on the expansion history through SZE/X-ray technique is also discussed. On the other hand, since the SZE/X-ray technique for measuring angular diameter distance of clusters depends on the cosmic distance duality relation (DD relation) validity, we investigate the consequences of such a dependence in two distinct ways: (i) we test the consistence between the strict validity of DD relation in the framework of the $\\Lambda$CDM model (WMAP7) and the different assumptions underlying the galaxy cluster geometries, and (ii) we propose a self-consistent and model-independent test for the DD relation by using type Ia supernovae and galaxy clusters data. Finally, for such a test, we also analyse the influence of the different supernovae light curve fitter methods. Our constraints for $H_0$ and the statistical consequences of the distance duality relation provide a new evidence that the true geometry of galaxy clusters is provided by the elliptical form. Such results also reinforce the interest for the observational research involving the Sunyaev-Zeldovich and X-rays from galaxy clusters at moderate and high {\\it redshifts}. (AU)