Evolution and characterization of serine protease gene family and its association ...
![]() | |
Author(s): |
Sandro Roberto Marana
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 1999-04-05 |
Examining board members: |
Clélia Ferreira Terra;
Pedro Soares de Araújo;
Ângelo Geraldo Gambarini;
Osvaldo Marinotti;
Helena Bonciani Nader
|
Advisor: | Clelia Ferreira Terra |
Abstract | |
Two digestive β-glycosidases (MW 47,000 and 50,000, named βgly47 and βgly50, respectively) whose are found in the S. frugiperda larvae were purified by a combination of chromatographic steps. Substrate competition experiments and chemical modification data showed that βgly47 has two active sites. One of them was called aryl β-glycosidase and presents a -1 subsite that prefers galactose while the +1 subsite binds small cyclic hydrophobic groups. The other active site was called cellobiase and presents 4 subsites that bind glucose residues weaker as they get far from the cleavage point. The cDNA that codes the βgly50 was cloned and sequenced. Amino acid sequence alignment, substrate competition experiments and inhibitions proved that this enzyme has just one active site. The -1 subsite specificity is controlled by a hydrogen bond network as it was showed comparing the kinetic parameters (Kcat and KcatlKm) for some NPβglycosides hydrolysis. The aglycone binding region, a hydrophobic cleft, was studied with alkyl β-glucosides and oligocellodextrins as competitive inhibitors. Amino acid sequence alignment between the βgly50 and other glycosil hydrolases showed the amino acids responsible for the substrate binding and that the GIU<SUB.187 (proton donor - pKa = 7.5) and GIU399 (nucleophile - pKa = 4.5) are directly involved in the catalysis. Beside this, Arg97 and Tyr331 participate indirectly in the catalysis, modulating the nucleophile pKa (AU) |