Advanced search
Start date
Betweenand


Contribution to the study of high performance concretes: mechanical properties, durability and microstructure.

Full text
Author(s):
Isac José da Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Jefferson Benedicto Libardi Liborio; Jasson Rodrigues de Figueiredo Filho; Joao Bento de Hanai; Milton Ferreira de Souza; Augusto Carlos Vasconcelos
Advisor: Jefferson Benedicto Libardi Liborio
Abstract

High performance concrete (HPC) is concrete that meets the requisites of hardness and mechanical strength of construction applications, and is produced with selected materiaIs, efficient equipment and controlled procedures. An experimental study was carried out with the main purpose of analyzing and establishing correlations based on mechanical properties and durability of the matrix\'s microstructure. To this end, the following factors were taken into consideration: a) the use of aggregates available in the region of São Carlos, SP, analyzing their fundamental characteristics; b) the use of Portland CP II E 32, CP V AR! Plus and CP V AR! RS cements according to the ABNT code, establishing a synergy with the other materiais involved; c) the establishment of dosages in the search for greater compactness; d) the relation among the constituents, correlating them with the forms of production and characteristics of application; e) follow-up of the development of hydration and of the microstructures of the compositions established, and the influence of the addition of active silica in the matrix as a whole. The microstructural analysis was based on tests of porosity by mercury intrusion, porosity by adsorption of nitrogen gas, scanning electron microscopy, thermogravimetry and X-ray diffraction. The results indicate that active silica exerts a strong influence on the quality of high performance concretes, particularly when associated with slag, indicating the possibility of producing durable concretes. Similarly, the mechanical findings suggest excellent prospects for HPC production, with high compressive strength in the range of up to 110MPa, flexural strength in the order of 10MPa, and abrasive strength approximately 40% superior to that of conventional concretes. (AU)