Advanced search
Start date
Betweenand


Biohydrogen production from chhese whey in an AnSBBR with recirculation of the liquid phase

Full text
Author(s):
Daniel Moureira Fontes Lima
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
José Alberto Domingues Rodrigues; Eduardo Lucena Cavalcante de Amorim; Rogers Ribeiro; Edson Luiz Silva; Giovana Tommaso
Advisor: José Alberto Domingues Rodrigues
Abstract

The present study investigated the application of two types of AnSBBR (anaerobic reactors with biofilm and operated in batch and fed-batch sequences: with recirculation of the liquid phase and with agitation) for biohydrogen production treating synthetic wastewater (cheese whey and lactose-based, respectively). The AnSBBR with recirculation of the liquid phase, which was the main study of this work, presented problems in the hydrogen production using cheese whey as substrate. Some alternatives, such as adaptation of the biomass with pure substrates of easier degradation, pH control at very low values and different forms of inoculation were tested but without achieving success. The solution of the problem was obtained by cooling the feed medium at 4ºC to prevent fermentation in the storage flasks, removing the urea and the nutrient supplementation, and performing periodic washing of the support material for the removal of part of the biomass. Thus, H2S production evidences by possible action of sulphate-reducing bacteria (SRB) were eliminated, reaching a stable production of hydrogen without eliminate the presence of methane completely, which was produced in low concentrations. After reaching the stability, it was investigated the influence of the influent concentration of the substrate, the influence of the filling time and the influence of the temperature on the production of biohydrogen in an AnSBBR with recirculation of the liquid phase treating cheese whey. The study of the influent concentration showed an optimum point for the concentration of 5400 mgDQO.L-1, reaching values of 0.80 mol H2.mol-1lactose and 660 mL H2.L-1.d-1. The study of the filling time showed similar results for the analyzed conditions. With respect to the temperature, the best results were obtained with the lowest temperature tested of 15ºC (1.12 mol H2.mol-1lactose and 1080 mL H2.L-1.d-1), while the highest temperature tested (45ºC) didn\'t produce hydrogen. For the AnSBBR with mechanical stirring (which was an additional study that was performed by the fact that the lactose is the main component of the cheese whey) the performance of the bioreactor was evaluated in accordance with the joint influence og the cycle time (tC - 2, 3 and 4 h ), the influent concentration (CSTA - 3600-5400 mgDQO.L-1) and the applied volumetric organic load (COAV - 9.3, 12.3, 13.9, 18.5 and 27.8 mgDQO.L-1.d-1). Excellent results were obtained: consumption of carbohydrates (lactose) always above 90% and a stable production of biohydrogen in all conditions studied, with low methane concentrations just in the condition with the biggest COAV. The decrease in the tC showed a clear trend of improvement of the RMCRC,n (molar yield between the hydrogen produced and removed carbohydrate) only for the conditions with the low influent concentration (CSTA). There was a direct relationship between CSTA and RMCRC,n in all values of tC, except for the cycle time of 3 hours, exactly in which there was methane production. The best value of RMCRC,n obtained in the operation with lactose (1.65 mol H2.mol-1Lactose) was superior to those obtained in other studies using the same reactor configuration and sucrose as substrate. Phylogenetic analysis showed that the majority of the analyzed clones was similar to Clostridium. In addition, clones phylogenetically similar to Lactobacilaceae family, specifically Lactobacillus rhamnosus, were observed in a small proportion in the reactor, as well as clones with similar sequences of Acetobacter indonesiensis. (AU)

FAPESP's process: 10/19315-3 - Biohydrogen production from cheese whey in AnSBBR with recirculation of the liquid phase
Grantee:Daniel Moureira Fontes Lima
Support Opportunities: Scholarships in Brazil - Doctorate