Advanced search
Start date
Betweenand


Function of Pseudomonas aeruginosa kerV gene

Full text
Author(s):
Diogo de Abreu Meireles
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Regina Lúcia Baldini; Henrique Ferreira; Frederico José Gueiros Filho; Carlos Frederico Martins Menck; Luis Eduardo Soares Netto
Advisor: Regina Lúcia Baldini
Abstract

P. aeruginosa PA14 is a burn isolate multi-host pathogen strain. The screening for virulence attenuated mutants in a PA14 transposon mutant library revealed the kerV gene (Rahme et al., 1997). The characterization of D12 strain, a kerV mutant, confirmed the attenuated virulence phenotype (Apidianakis et al., 2005 and An et al., 2009) and transcriptome analysis showed the expression of more than 500 genes are affected in D12, some of these genes are related with quorum sensing (Rahme et al, unpublished data). kerV is upstream of the gloB gene, related with methylglioxal detoxification and downstream of the rnhA and dnaQ genes, both related with DNA replication and repair. The purpose of this work was to study the molecular function of KerV product and the expression of kerV-rnhA-dnaQ locus. Bioinformatics analysis indicated that KerV is a SAM dependent methyltransferase that have a conserved SAM binding domain with architecture compatible with classic alternating β-stranded and α-helical regions. KerV does not show any other conserved motif that could indicate its methylation substrate. Heterologous expression in E. coli showed that KerV is partially soluble only when co-expressed with GroeL/GroES chaperones at low temperatures or when KerV is in fusion with MBP or GST tag. During the purification process KerV was copurified with GroEL chaperone suggesting that this association may be required for the correct folding of KerV. Methyltransferase activity and SAM binding assays were done with purified MBPKerV and the results were not conclusive since the proper conformation of MBP-KerV cannot be verified. Yeast two-hybrid assays indicated that RNaseH and DnaQ are not interaction partners of KerV, suggesting that their functions are not directly related. The mutation frequency of D12 strain increased only about four times in relation to PA14, suggesting that KerV is not directly involved with DNA mismatch repair. The assays to detect methylation in DNA, RNAs and proteins do not show that KerV is involved with methylation of these substrates. The transcription start sites of kerV, rnhA and dnaQ genes were mapped through 5\'-RACE- and primer extension experiments. The kerV deletion causes a polar effect on the transcription of rnhA gene, which is not reflected on RNaseH protein levels. The kerV deletion also affects dnaQ expression, suggesting that KerV is important for its regulation.The virulence complementation assays in flies and lung epithelial cells showed that the fully rescue of the wild type phenotype was achieved only when the entire locus is present. KerV was essential to inhibit the NF-kB nucleus translocation, demonstrating that KerV is relevant to PA14 virulence, contributing for the silencing of host immune system. Altogether, these data showed a complex inter-relation among kerV, rnhA and dnaQ genes and its role in P. aeruginosa biology (AU)

FAPESP's process: 07/03121-2 - Function of Pseudomonas aeruginosa PA14_41070 gene, involved in pathogenicity and quorum sensing
Grantee:Diogo de Abreu Meireles
Support Opportunities: Scholarships in Brazil - Doctorate