Advanced search
Start date
Betweenand


Multienzyme Conversion of sucrose into fructose and gluconic acid in Discontinuous and Continuous Reactors

Full text
Author(s):
Aline Ramos da Silva
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Michele Vitolo; Suzana Caetano da Silva Lannes; Roberto Rodrigues Ribeiro
Advisor: Michele Vitolo
Abstract

Sucrose is produced in large amount in Brazil, being a worldwide commercialized commodity. However, it can be converted into more valuable products such as fructose and gluconic acid, both used largely in the chemical, pharmaceutical and food industry. Conversion occurred through the action of invertase, glucose oxidase and catalase, using the discontinuous and continuous reactors. In the batch reactor, the residence time is equal to reactants, products and catalyst. In this case, enzymes were added sequentially, at first, and in the second step were added simultaneously. Boot parameters, initial sucrose concentration, pH, temperature and enzyme activities were tested in different amounts in order to find the most efficient initial mixture to the conversion of the substrate. In continuous process, we used the membrane reactor, MILLIPORE®, which allows for one-step catalytic conversion, the separation / concentration of the product and recovery of the biocatalyst. The temperature was controlled by circulation of water, coupled with a peristaltic pump (to control the feed flow of the substrate) and a pressurization system. The reactor was operated with ultrafiltration membrane (molecular cutoff = 100 kDa) and was kept under constant agitation. The initial parameters in this reactor were set according to the values optimized in the batch reactor with the simultaneous use of enzymes. (AU)