Advanced search
Start date
Betweenand


Polynomial identities of the octonion algebra

Full text
Author(s):
Fernando Henry Meirelles
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Defense date:
Examining board members:
Ivan Chestakov; Plamen Emilov Kochloukov; Alexandr Kornev; Lucia Satie Ikemoto Murakami; Irina Sviridova
Advisor: Ivan Chestakov
Abstract

In this work we find bases for the T Z 32 and T Z 22 graded identities of the octonion algebra. Using the base obtained in the T Z 22 case, we re-obtain a basis for the Z 2 -graded identities of two by two matrices. We also obtained the simultaneously skew and weak identities of the octonions in the category of alternative algebras. In addition we find a basis of identities for the simple Malcev algebra of dimension seven, sl(O). For both skew cases of identities studied we positively show the Shestakov-Zhukavets conjecture: The T -ideal of identities of the octonions coincides with that of the quadratic alternative algebra. (AU)