Advanced search
Start date
Betweenand


Study of protein disulfide isomerase (PDIA1) externalization route in endothelial cells

Full text
Author(s):
Thaís Larissa Araujo de Oliveira Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Francisco Rafael Martins Laurindo; Sergio Schenkman; Fernando Lucas Palhano Soares
Advisor: Francisco Rafael Martins Laurindo
Abstract

Protein disulfide isomerase (PDIA1 or PDI) is dithiol-disulfide oxireductase chaperone resident in the endoplasmic reticulum (ER). PDI is essential for proteostasis, due to its support of oxidative protein folding and ER-associated protein degradation (ERAD). In addition, PDI associates with NADPH oxidase(s) and regulate its activity, while outside of the cell, PDI redox-dependently modulates extracellular proteins. This epi/pericellular PDI (pecPDI) pool is known to regulate membrane/secreted proteins such as integrins, HIV glycoprotein gp120 and others, with functions that involve thrombosis, platelet function, cell adhesion, viral infection and vascular remodeling. PDI externalization route remains enigmatic and its elucidation can help understand some (patho)physiological PDI effects. An ER-Golgi route for PDI secretion has been as described on dengue virus-infected endothelial cells pancreatic and thyroid) cells. However, none of these papers addressed PDI secretion routes in a systematic fashion. Here, we show that endothelial cells (EC) constitutively externalize, through different routes, two PDI pools, a cell-surface and a secreted one, while in nonstimulated ECs PDI was not significantly detected in microparticles. Externalized PDI corresponds to < 2% of total cellular PDI pool. Both cell-surface and soluble PDI were predominantly externalized through unconventional type IV GRASP-independent pathway(s). However, the classical secretory pathway also contributes to basal cell-surface, but not soluble, PDI externalization, as PMA, ATP or thrombin-stimulated secretion also involve Golgi bypass. Furthermore, constitutive cell-surface PDI externalization in vascular smooth muscle cells also occurs in a Golgi-independent way. PDI externalization was not detectably mediated by non-conventional type I, II and III secretion routes, secretory lysosomes, recycling endosomes and ATP dependent active transport in EC. Since chaperones are essential for cellular stress response, we assessed the effects of ER stress and heat-shock on pecPDI. ER stress did not affect cell-surface PDI but increased the soluble pool. Both PDI pools were unaltered by heat shock, while stress recovery decreased PDI secretion. These data suggest that PDI release is finely tuned and dependent on the type of stress. Blockade of protein synthesis with cycloheximide did not change pecPDI levels, suggesting that newly-synthesized PDI is not preferentially externalized and that PDI traffic does not require newly-synthesized proteins. An important aspect of the study was the evidence for pecPDI resilience to individual modulation of distinct secretion routes, consistent with strict auto-regulation and possible synergic or complementary pathways. Overall, our data suggest that cell-surface and secreted PDI pool externalization are regulated through independent mechanisms, which in both cases involve Type IV non-conventional routes, with some minor contribution of Golgi-dependent secretory pathway. These patterns compose a strictly regulated process, consistent with an important homeostatic role for pecPDI (AU)

FAPESP's process: 12/02372-0 - Mechanisms and redox effects of epi/pericellular protein disulfide isomerase
Grantee:Thaís Larissa Araujo de Oliveira Silva
Support Opportunities: Scholarships in Brazil - Doctorate