Advanced search
Start date
Betweenand


Nanogravimetric Study of Kinetic Instability in Electrocatalytic Systems

Full text
Author(s):
Marcelo Victor Ragassi
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Hamilton Brandão Varela de Albuquerque; Elton Fabiano Sitta; Ernesto Chaves Pereira de Souza
Advisor: Hamilton Brandão Varela de Albuquerque
Abstract

The study of the mass variation on the surface of the electrode can provide important information about interfacial processes. If there is a good interpretation, the results may aid in the elucidation of the reaction mechanism. So, aspects like adsorption of electroactive species, formation and oxidation of adsorbents, load transfer processes and their dependence on potential can be evaluated. The appearance of kinetic instabilities in electrochemical systems, particularly during the electro-oxidation of small organic molecules, has been the subject of several studies. The electro-oxidation of methanol was studied on platinum in alkaline and acid media using the technique of nanobalance electrochemical scale to quartz crystal. The alkali metal cations have a very important role on the electrodes processes, influencing the formation of PtO and the oxidation current of the fuel. The oxidation of the KOH surface is favored in relation to LiOH and the mass variation for this process is greater in the first case. However, the calculated molar mass for oxygenated species on the surface was higher for the solution containing LiOH. To verify the interaction of the oxidized platinum surface with the organic, open-circuit potential measurements were performed and it was found that in the solution containing Li+ ions the time before the steep drop in potential was greater, corresponding during the transient mass variation of -69.0 ng.cm-2 and - 62.3 ng.cm-2 for the solutions of aqueous potassium hydroxide and aqueous lithium hydroxide, respectively. In the acid experiments, the focus was to study the mass variation during oscillations under galvanostatic conditions. It was noted that this variation of mass it was very small, about 4.7 ng.cm-2, when aqueous sulfuric acid electrolyte was used, and with relatively good resolution. Then, the electro-oxidation of methanol in solution of perchloric acid in the absence and presence of chloride ions on platinum was studied. The oxidation of the plantine surface is delayed to potentials a little more high in the solution containing chloride than in relation to that without these ions, After the addition of methanol an estimation of the coating of oxidation in the surface was realized for the two situations in question. The value of θO found was 3.1 and 3.4 for the solution without chloride and with chloride, respectively. In the galvanostatic experiments, it was verified that the oscillations of potential and mass presented higher frequency when there were Cl- ions in the solution. With the nanogravimetry experiments, it was possible to calculate the variation of θCO during an oscillation. The values obtained were 0.08 and 0.12 for the solution with and without chloride, respectively. In a final step, the electrode was polarized at 1.4 V for 300 s and then the circuit was opened and waited until it reached equilibrium potential. It was observed that the time for this potential to be reached was 9.1 s for solution without chloride and 31 s for the one containing the anions. In addition, the value of θO was calculated for the two solutions. For the first, the value was 4.2 and for the second it was 5.1. The chloride ions influence in the oxidation reduction process in open circuit potential experiments throughout the transient due to the chemisorption process that occurs and competition with the methanol molecules through free sites. This phenomenon is also possibly responsible for the mass observed in the transient and consequently in the value of θO. (AU)

FAPESP's process: 16/20728-7 - Nanogravimetric study of the kinetic instabilities in eletrocatalytic systems
Grantee:Marcelo Victor Ragassi
Support Opportunities: Scholarships in Brazil - Master