Advanced search
Start date
Betweenand


Study of clavulanic acid partitioning using two-phase aqueous micellar system with salt or polymer addition

Full text
Author(s):
Marcela de Siqueira Cardoso Silva
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Carlota de Oliveira Rangel Yagui; Daniela de Borba Gurpilhares; Priscila Gava Mazzola
Advisor: Carlota de Oliveira Rangel Yagui
Abstract

Clavulanic acid (CA) corresponds to a potent β-lactamase inhibitor that is used in association with β-lactamic antibiotics. The industrial purification of CA usually involves liquid-liquid extraction processes employing organic solvents followed by several chromatographic steps. Therefore, new purification alternatives such as aqueous two-phase micellar systems (ATPS) are of great interest. These systems can provide selectivity in biomolecule partitioning according to hydrophobicity and other molecular properties. Within this context, the main goal of this study was to investigate CA partitioning in aqueous two-phase micellar (nonionic) systems, with and without the addition of (NH4)2SO4 or dextrane sulfate (Dx-S). Stability studies performed with CA indicated that the drug is more stable at pH 6.5 and lower temperatures (5 - 20 ºC). In addition, it was demonstrated that Dx-S addition led to a lower loss of CA stability in comparisson to (NH4)2SO4, with residual values ≥ 90% at 35 °C. The drug was found to be very stable in the presence of the surfactants Triton X-114 and Triton X-100, with residual values around 100%. Regarding CA partitioning in the ATPMS, the drug partitioned preferentially to the micelle-poor phase, irrespective of the surfactante employed and of the presence of (NH4)2SO4,with partition coefficient (KAC) ~ 0.7 and yield in the poor phase (Yclavd) ~ 75%. Nonetheless, the addition of Dx-S in concentrations (≥ 8.0% p/p) resulted in a discrete increase in KAC, with values around 1 - 1.5. Therefore, the results obtained in this work demostrated that the addition of (NH4)2SO4 or Dx-S to ATPMS did not significantly influenced CA partitioning to the micelle-rich phase and, in this context, the systems investigated could be considered more eficiente for CA recovery in the micelle-poor phase, as a previous extraction step of a biotechnological process. (AU)

FAPESP's process: 10/02324-0 - Study of clavulanic acid partitioning using two-phase aqueous micellar system with salt or polymer addition
Grantee:Marcela de Siqueira Cardoso Silva
Support Opportunities: Scholarships in Brazil - Master