Advanced search
Start date
Betweenand


Characterization of IRS1/AKT/mTOR pathway in tumor xenografts of animals supplemented with leucine

Full text
Author(s):
Maria Carolina Santos Mendes
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Ciências Médicas
Defense date:
Examining board members:
José Barreto Campello Carvalheira; Mario José Abdalla Saad; Willian Tadeu Lara Festuccia; Roger Chammas; Dennys Esper Cintra; André Almeida Schenka
Advisor: José Barreto Campello Carvalheira
Abstract

mTOR is a key regulatory protein in various cellular processes including proliferation, cell growth and survival. Growth factors, oxygen, energy status and amino acids are all essential to these processes. New findings in the last few decades have shown that the mTOR pathway is activated in many cellular processes, including tumorigenesis and angiogenesis. The branched chain amino acid leucine has the greatest potential to activate the mTOR pathway. Due to its ability to promote protein synthesis and muscle mass gain, use of leucine is frequently utilized in patients with cancer. However, the effect of leucine on tumor growth is not clear. The aim of this study is therefore to investigate the effect of diet-supplemented leucine on the modulation of tumor growth in several tumor cell lines that differ in the constitutive activation status of the insulin receptor substrate 1 (IRS1)/AKT/mTOR pathway. Both in vitro and in vivo experiments demonstrated different cell proliferation responses when cells were exposed to high doses of leucine. Tumor cell lines PC-3 and MCF-7, which have a constitutively activated mTOR signaling, displayed reduced cell proliferation and G1 phase cell cycle arrest when supplemented with high doses of leucine in vitro. Likewise, leucine-supplemented PC-3 cell tumor xenografts displayed reduced proliferation and increased cell death. We also observed increased activity of mTOR and its downstream substrate p70S6K in all cell lines supplemented with leucine. Increased mTOR activity was accompanied by a reduction in AKT serine 473 (ser473) phosphorylation in cell lines with a hyperactivated PI3K pathway (PC-3 and MCF-7). This most likely occurred because leucine supplementation further increased mTOR and p70S6K activity, triggering the inhibitory p70S6K/IRS1 axis. In fact, we found increased IRS1 ser307 phosphorylation in hyperactivated cell lines (PC-3 and MCF-7) supplemented with high doses of leucine. Therefore, our results suggest that mTOR pathway activation is central to determining the sensitivity of tumors to leucine supplementation. Furthermore, this could affect the response to leucine-supplemented therapies of those tumors in which the PI3K pathway is constitutively activated. The mechanism for this appears to be related to the negative p70S6K/IRS1 regulation axis, with consequent reduction of AKT phosphorylation and the release of apoptotic pathways in tumor tissues (AU)

FAPESP's process: 10/17944-3 - CARACTERIZATION OF IRS1/Akt/mTOR PATHWAY ON TUMOR XENOGRAFTS OF MICE FED HYPERPROTEIN DIET
Grantee:Maria Carolina Santos Mendes
Support Opportunities: Scholarships in Brazil - Doctorate